997 resultados para Stomatal density


Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the present study, proxy data concerning changes in atmospheric CO2 and climatic conditions from the Late Eocene to the Early Miocene were acquired by applying palaeobotanical methods. Fossil floras from 10 well-documented locations in Saxony, Germany, were investigated with respect to (1) stomatal density/index of fossil leaves from three different taxa (Eotrigonobalanus furcinervis, Laurophyllum pseudoprinceps and Laurophyllum acutimontanum), (2) the coexistence approach (CA) based on nearest living relatives (NLR) and (3) leaf margin analysis (LMA). Whereas the results of approach (1) indicate changes in atmospheric CO2 concentration, approaches (2) and (3) provide climate data. The results of the analysis of stomatal parameters indicate that the atmospheric CO2 concentration was higher during the Late Eocene than during the Early Oligocene and increased towards the Late Oligocene. A lower atmospheric pCO2 level after the Late Eocene is also suggested by an increase in marine palaeoproductivity at this time. From the Late Oligocene onwards, no changes in atmospheric CO2 concentration can be detected with the present data. For the considered sites, the results of the coexistence approach and of the leaf margin analysis document a significant cooling event from the Late Eocene to the Early Oligocene. The pCO2 decrease from the Late Eocene to the Early Oligocene indicated by the stomatal data raised in this study was thus coupled to a temperature decrease which is reflected by the present datasets. From the Early Oligocene onwards, however, no further fundamental climate change can be inferred for the considered locations. The pCO2 increase from the Early Oligocene to the Late Oligocene, which is indicated by the present data, is thus not accompanied by a climate change at the considered sites. A warming event during the Late Oligocene is, however, recorded by marine climate archives. According to the present data, no change in pCO2 occurred during the cooling event at the Oligocene/Miocene boundary, which is also indicated by marine data. The quality and validity of stomatal parameters as sensors for atmospheric CO2 concentration are discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper concentrates on the Early Oligocene palaeoclimate of the southern part of Eastern and Central Europe and gives a detailed climatological analysis, combined with leaf-morphological studies and modelling of the palaeoatmospheric CO2 level using stomatal and d13 C data. Climate data are calculated using the Coexistence Approach for Kiscellian floras of the Palaeogene Basin (Hungary and Slovenia) and coeval assemblages from Central and Southeastern Europe. Potential microclimatic or habitat variations are considered using morphometric analysis of fossil leaves from Hungarian, Slovenian and Italian floras. Reconstruction of CO2 is performed by applying a recently introduced mechanistic model. Results of climate analysis indicate distinct latitudinal and longitudinal climate patterns for various variables which agree well with reconstructed palaeogeography and vegetation. Calculated climate variables in general suggest a warm and frost-free climate with low seasonal variation of temperature. A difference in temperature parameters is recorded between localities from Central and Southeastern Europe, manifested mainly in the mean temperature of the coldest month. Results of morphometric analysis suggest microclimatic or habitat difference among studied floras. Extending the scarce information available on atmospheric CO2 levels during the Oligocene, we provide data for a well-defined time-interval. Reconstructed atmospheric CO2 levels agree well with threshold values for Antarctic ice sheet growth suggested by recent modelling studies. The successful application of the mechanistic model for the reconstruction of atmospheric CO2 levels raises new possibitities for future climate inference from macro-flora studies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Effects of water stress duration and intensity on gas exchange and leaf water potential were investigated in 7-month-old seedlings of a humid coastal provenance (Gympie) and a dry inland (Hungry Hills) provenance of E. cloeziana F. Muell. and in a dry inland (Chinchilla) provenance of E. argophloia Blakely supplied with 100% (T-100), 70% (T-70), 50% (T-50) of their water requirements, or were watered only after they were wilted at dawn (T-0). Seedlings of E. argophloia had the highest midday net photosynthetic rate (A), stomata] conductance (g(s)), stomatal density and predawn leaf water potential (Psi(pd)) in all treatments. The E. cloeziana provenances did not differ in these attributes. The T-70 and T-50 treatments caused reductions in A of 30% in E. argophloia, and 55% in the E. cloeziana provenances. Under the T-0 treatment, E. argophloia maintained higher rates of gas exchange at all levels of water stress than E. cloeziana provenances. The estimates of Psi(pd) and midday water potential (Psi(md)) at which plants remained wilted overnight were respectively: -2.7 and -4.1 MPa for E. cloeziana (humid), -2.8 and -4.0 MPa for E. cloeziana (dry) and, -3.7 and -4.9 MPa for E. argophloia. Following stress relief, both A and g(s) recovered more quickly in E. argophloia and in the dry provenance of E. cloeziana than in the humid provenance. We conclude that E. argophloia is more drought tolerant and has a potential for cultivation in the humid and semi humid climates, whilst E. cloeziana has greater potential in the humid subtropical climates.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Figs are rainforest keystone species. Non-strangler figs establish on the forest floor; strangler figs establish epiphytically, followed by a dramatic transition from epiphyte to free-standing tree that kills its hosts. Free-standing figs display vigorous growth and resource demand suggesting that epiphytic strangler figs require special adaptations to deal with resource limitations imposed by the epiphytic environment. We studied epiphytic and free-standing strangler figs, and non-strangler figs in tropical rainforest and in cultivation, as well as strangler figs in controlled conditions. We investigated whether the transition from epiphyte to free-standing tree is characterised by morphological and physiological plasticity. Epiphyte substrate had higher levels of plant-available ammonium and phosphate, and similar levels of nitrate compared with rainforest soil, suggesting that N and P are initially not limiting resources. A relationship was found between taxonomic groups and plant N physiology; strangler figs, all members of subgenus Urostigma, had mostly low foliar nitrate assimilation rates whereas non-strangler figs, in subgenera Pharmacocycea, Sycidium, Sycomorus or Synoecia, had moderate to high rates. Nitrate is an energetically expensive N source, and low nitrate use may be an adaptation of strangler figs for conserving energy during epiphytic growth. Interestingly, significant amounts of nitrate were stored in fleshy taproot tubers of epiphytic stranglers. Supporting the concept of plasticity, leaves of epiphytic Ficus benjamina L. had lower N and C content per unit leaf area, lower stomatal density and 80% greater specific leaf area than leaves of conspecific free-standing trees. Similarly, glasshouse-grown stranglers strongly increased biomass allocation to roots under water limitation. Epiphytic and free-standing F. benjamina had similar average foliar delta C-13, but epiphytes had more extreme values; this indicates that both groups of plants use the C-3 pathway of CO2 fixation but that water availability is highly variable for epiphytes. We hypothesise that epiphytic figs use fleshy stem tubers to avoid water stress, and that nitrate acts as an osmotic compound in tubers. We conclude that strangler figs are a unique experimental system for studying the transition from rainforest epiphyte to tree, and the genetic and environmental triggers involved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The developmental responses of plants to shade underneath foliage are influenced by reductions in irradiance and shifts in spectral quality (characterized by reductions in the quantum ratio of red to far-red wavelengths, R:FR). Previous research on the influence of shadelight on leaf development has neglected the reductions in R:FR characteristic of foliage shade, and these studies have almost certainly underestimated the extent and array of developmental responses to foliage shade. We have studied the effects of reduced irradiance and R:FR on the leaf development of papaya (Carica papaya L., Caricaceae). Using experimental shadehouses, replicates of plants grown in high light conditions (0.20 of sunlight and R:FR = 0.90) were compared to low light conditions (0.02 of sunlight) with either the spectral quality of sunlight (R:FR = 0.99) or of foliage shade (F:FR = 0.26). Although many characteristics, such as leaf thickness, specific leaf weight, stomatal density, palisade parenchyma cell shape, and the ratio of mesophyll air surface/leaf surface were affected by reductions in irradiance, reduced R:FR contributed to further changes. Some characters, such as reduced chlorophyll a/b ratios, reduced lobing, and greater internode length, were affected primarily by low R:FR. The reduced R:FR of foliage shade, presumably affecting phytochrome equilibrium, strongly influences the morphology and anatomy of papaya leaves.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective was to study the leaf temperature (LT) and leaf diffusive vapor conductance (gs) responses to temperature, humidity and incident flux density of photosynthetically active photons (PPFD) of tomato plants grown without water restriction in a plastic greenhouse in Santa Maria, RS, Brazil. The plants were grown in substrate and irrigated daily. The gs was measured using a steady-state null-balance porometer on the abaxial face of the leaves during the daytime. Both leaf surfaces were measured in one day. The PPFD and LT were measured using the porometer. Leaf temperature was determined using an infrared thermometer, and air temperature and humidity were measured using a thermohygrograph. The leaves on the upper layer of the plants had higher gs than the lower layer. The relationship between the gs and PPFD was different for the two layers in the plants. A consistent relationship between the gs and atmospheric water demand was observed only in the lower layer. The LT tended to be lower than the air temperature. The mean value for the gs was 2.88 times higher on the abaxial than adaxial leaf surface.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective was to study the leaf temperature (LT) and leaf diffusive vapor conductance (gs) responses to temperature, humidity and incident flux density of photosynthetically active photons (PPFD) of tomato plants grown without water restriction in a plastic greenhouse in Santa Maria, RS, Brazil. The plants were grown in substrate and irrigated daily. The gs was measured using a steady-state null-balance porometer on the abaxial face of the leaves during the daytime. Both leaf surfaces were measured in one day. The PPFD and LT were measured using the porometer. Leaf temperature was determined using an infrared thermometer, and air temperature and humidity were measured using a thermohygrograph. The leaves on the upper layer of the plants had higher gs than the lower layer. The relationship between the gs and PPFD was different for the two layers in the plants. A consistent relationship between the gs and atmospheric water demand was observed only in the lower layer. The LT tended to be lower than the air temperature. The mean value for the gs was 2.88 times higher on the abaxial than adaxial leaf surface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report a theoretical study of the multiple oxidation states (1+, 0, 1−, and 2−) of a meso,meso-linked diporphyrin, namely bis[10,15,20-triphenylporphyrinatozinc(II)-5-yl]butadiyne (4), using Time-Dependent Density Functional Theory (TDDFT). The origin of electronic transitions of singlet excited states is discussed in comparison to experimental spectra for the corresponding oxidation states of the close analogue bis{10,15,20-tris[3‘,5‘-di-tert-butylphenyl]porphyrinatozinc(II)-5-yl}butadiyne (3). The latter were measured in previous work under in situ spectroelectrochemical conditions. Excitation energies and orbital compositions of the excited states were obtained for these large delocalized aromatic radicals, which are unique examples of organic mixed-valence systems. The radical cations and anions of butadiyne-bridged diporphyrins such as 3 display characteristic electronic absorption bands in the near-IR region, which have been successfully predicted with use of these computational methods. The radicals are clearly of the “fully delocalized” or Class III type. The key spectral features of the neutral and dianionic states were also reproduced, although due to the large size of these molecules, quantitative agreement of energies with observations is not as good in the blue end of the visible region. The TDDFT calculations are largely in accord with a previous empirical model for the spectra, which was based simplistically on one-electron transitions among the eight key frontier orbitals of the C4 (1,4-butadiyne) linked diporphyrins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aijt-Sahalia (2002) introduced a method to estimate transitional probability densities of di®usion processes by means of Hermite expansions with coe±cients determined by means of Taylor series. This note describes a numerical procedure to ¯nd these coe±cients based on the calculation of moments. One advantage of this procedure is that it can be used e®ectively when the mathematical operations required to ¯nd closed-form expressions for these coe±cients are otherwise infeasible.