843 resultados para Stochastic nonlinear systems
Resumo:
Some new concepts characterizing the response of nonlinear systems are developed. These new concepts are denoted by the terms, the transient system equivalent, the response vector, and the space-phase components. This third concept is analyzed in comparison with the well-known technique of symmetrical components. The performance of a multiplicative feedback control system is represented by a nonlinear integro-differential equation; its solution is obtained by the principle of variation of parameters. The system response is treated as a vector and is resolved into its space-phase components. The individual effects of these components on the performance of the system are discussed. The suitability of the technique for the transient analysis of higher order nonlinear control systems is discussed.
Resumo:
Sufficient conditions are given for the L2-stability of a class of feedback systems consisting of a linear operator G and a nonlinear gain function, either odd monotone or restricted by a power-law, in cascade, in a negative feedback loop. The criterion takes the form of a frequency-domain inequality, Re[1 + Z(jω)] G(jω) δ > 0 ω ε (−∞, +∞), where Z(jω) is given by, Z(jω) = β[Y1(jω) + Y2(jω)] + (1 − β)[Y3(jω) − Y3(−jω)], with 0 β 1 and the functions y1(·), y2(·) and y3(·) satisfying the time-domain inequalities, ∝−∞+∞¦y1(t) + y2(t)¦ dt 1 − ε, y1(·) = 0, t < 0, y2(·) = 0, t > 0 and ε > 0, and , c2 being a constant depending on the order of the power-law restricting the nonlinear function. The criterion is derived using Zames' passive operator theory and is shown to be more general than the existing criteria
Resumo:
A technique is developed to study random vibration of nonlinear systems. The method is based on the assumption that the joint probability density function of the response variables and input variables is Gaussian. It is shown that this method is more general than the statistical linearization technique in that it can handle non-Gaussian excitations and amplitude-limited responses. As an example a bilinear hysteretic system under white noise excitation is analyzed. The prediction of various response statistics by this technique is in good agreement with other available results.
Resumo:
Even though dynamic programming offers an optimal control solution in a state feedback form, the method is overwhelmed by computational and storage requirements. Approximate dynamic programming implemented with an Adaptive Critic (AC) neural network structure has evolved as a powerful alternative technique that obviates the need for excessive computations and storage requirements in solving optimal control problems. In this paper, an improvement to the AC architecture, called the �Single Network Adaptive Critic (SNAC)� is presented. This approach is applicable to a wide class of nonlinear systems where the optimal control (stationary) equation can be explicitly expressed in terms of the state and costate variables. The selection of this terminology is guided by the fact that it eliminates the use of one neural network (namely the action network) that is part of a typical dual network AC setup. As a consequence, the SNAC architecture offers three potential advantages: a simpler architecture, lesser computational load and elimination of the approximation error associated with the eliminated network. In order to demonstrate these benefits and the control synthesis technique using SNAC, two problems have been solved with the AC and SNAC approaches and their computational performances are compared. One of these problems is a real-life Micro-Electro-Mechanical-system (MEMS) problem, which demonstrates that the SNAC technique is applicable to complex engineering systems.
Resumo:
Stochastic structural systems having a stochastic distribution of material properties and stochastic external loadings in space are analysed when a crack of deterministic size is present. The material properties and external loadings are considered to constitute independent, two-dimensional, univariate, real, homogeneous stochastic fields. The stochastic fields are characterized by their means, variances, autocorrelation functions or the equivalent power spectral density functions, and scale fluctuations. The Young's modulus and Poisson's ratio are treated to be stochastic quantities. The external loading is treated to be a stochastic field in space. The energy release rate is derived using the method of virtual crack extension. The deterministic relationship is derived to represent the sensitivities of energy release rate with respect to both virtual crack extension and real system parameter fluctuations. Taylor series expansion is used and truncation is made to the first order. This leads to the determination of second-order properties of the output quantities to the first order. Using the linear perturbations about the mean values of the output quantities, the statistical information about the energy release rates, SIF and crack opening displacements are obtained. Both plane stress and plane strain cases are considered. The general expressions for the SIF in all the three fracture modes are derived and a more detailed analysis is conducted for a mode I situation. A numerical example is given.
Resumo:
Use of some new planes such as the R-x, R2-x (where R represents in the n-dimensional phase space, the radius vector from the origin to any point on the trajectory described by the system) is suggested for analysis of nonlinear systems of any kind. The stability conditions in these planes are given. For easy understanding of the method, the transformation from the phase plane to the R-x, R2-x planes is brought out for second-order systems. In general, while these planes serve as useful as the phase plane, they have proved to be simpler in determining quickly the general behavior of certain classes of second-order nonlinear systems. A chart and a simple formula are suggested to evaluate time easily from the R-x and R2-x trajectories, respectively. A means of solving higher-order nonlinear systems is also illustrated. Finally, a comparative study of the trajectories near singular points on the phase plane and on the new planes is made.
Resumo:
Analysis of certain second-order nonlinear systems, not easily amenable to the phase-plane methods, and described by either of the following differential equations xÿn-2ÿ+ f(x)xÿ2n+g(x)xÿn+h(x)=0 ÿ+f(x)xÿn+h(x)=0 n≫0 can be effected easily by drawing the entire portrait of trajectories on a new plane; that is, on one of the xÿnÿx planes. Simple equations are given to evaluate time from a trajectory on any of these n planes. Poincaré's fundamental phase plane xÿÿx is conceived of as the simplest case of the general xÿnÿx plane.
Resumo:
This paper suggests the use of simple transformations like ÿ=kx, kx2 for second-order nonlinear differential equations to effect rapid plotting of the phase-plane trajectories. The method is particularly helpful in determining quickly the trajectory slopes along simple curves in any desired region of the phase plane. New planes such as the tÿ-x, tÿ2-x are considered for the study of some groups of nonlinear time-varying systems. Suggestions for solving certain higher-order nonlinear systems are also made.
Resumo:
Stochastic hybrid systems arise in numerous applications of systems with multiple models; e.g., air traffc management, flexible manufacturing systems, fault tolerant control systems etc. In a typical hybrid system, the state space is hybrid in the sense that some components take values in a Euclidean space, while some other components are discrete. In this paper we propose two stochastic hybrid models, both of which permit diffusion and hybrid jump. Such models are essential for studying air traffic management in a stochastic framework.
Resumo:
In the previous paper, a class of nonlinear system is mapped to a so-called skeleton linear model (SLM) based on the joint time-frequency analysis method. Behavior of the nonlinear system may be indicated quantitatively by the variance of the coefficients of SLM versus its response. Using this model we propose an identification method for nonlinear systems based on nonstationary vibration data in this paper. The key technique in the identification procedure is a time-frequency filtering method by which solution of the SLM is extracted from the response data of the corresponding nonlinear system. Two time-frequency filtering methods are discussed here. One is based on the quadratic time-frequency distribution and its inverse transform, the other is based on the quadratic time-frequency distribution and the wavelet transform. Both numerical examples and an experimental application are given to illustrate the validity of the technique.
Resumo:
The joint time-frequency analysis method is adopted to study the nonlinear behavior varying with the instantaneous response for a class of S.D.O.F nonlinear system. A time-frequency masking operator, together with the conception of effective time-frequency region of the asymptotic signal are defined here. Based on these mathematical foundations, a so-called skeleton linear model (SLM) is constructed which has similar nonlinear characteristics with the nonlinear system. Two skeleton curves are deduced which can indicate the stiffness and damping in the nonlinear system. The relationship between the SLM and the nonlinear system, both parameters and solutions, is clarified. Based on this work a new identification technique of nonlinear systems using the nonstationary vibration data will be proposed through time-frequency filtering technique and wavelet transform in the following paper.
Resumo:
This paper presents a vaccination strategy for fighting against the propagation of epidemic diseases. The disease propagation is described by an SEIR (susceptible plus infected plus infectious plus removed populations) epidemic model. The model takes into account the total population amounts as a refrain for the illness transmission since its increase makes the contacts among susceptible and infected more difficult. The vaccination strategy is based on a continuous-time nonlinear control law synthesised via an exact feedback input-output linearization approach. An observer is incorporated into the control scheme to provide online estimates for the susceptible and infected populations in the case when their values are not available from online measurement but they are necessary to implement the control law. The vaccination control is generated based on the information provided by the observer. The control objective is to asymptotically eradicate the infection from the population so that the removed-by-immunity population asymptotically tracks the whole one without precise knowledge of the partial populations. The model positivity, the eradication of the infection under feedback vaccination laws and the stability properties as well as the asymptotic convergence of the estimation errors to zero as time tends to infinity are investigated.