986 resultados para Stochastic Approach


Relevância:

60.00% 60.00%

Publicador:

Resumo:

There are two principal chemical concepts that are important for studying the natural environment. The first one is thermodynamics, which describes whether a system is at equilibrium or can spontaneously change by chemical reactions. The second main concept is how fast chemical reactions (kinetics or rate of chemical change) take place whenever they start. In this work we examine a natural system in which both thermodynamics and kinetic factors are important in determining the abundance of NH+4 , NO−2 and NO−3 in superficial waters. Samples were collected in the Arno Basin (Tuscany, Italy), a system in which natural and antrophic effects both contribute to highly modify the chemical composition of water. Thermodynamical modelling based on the reduction-oxidation reactions involving the passage NH+4 -> NO−2 -> NO−3 in equilibrium conditions has allowed to determine the Eh redox potential values able to characterise the state of each sample and, consequently, of the fluid environment from which it was drawn. Just as pH expresses the concentration of H+ in solution, redox potential is used to express the tendency of an environment to receive or supply electrons. In this context, oxic environments, as those of river systems, are said to have a high redox potential because O2 is available as an electron acceptor. Principles of thermodynamics and chemical kinetics allow to obtain a model that often does not completely describe the reality of natural systems. Chemical reactions may indeed fail to achieve equilibrium because the products escape from the site of the rection or because reactions involving the trasformation are very slow, so that non-equilibrium conditions exist for long periods. Moreover, reaction rates can be sensitive to poorly understood catalytic effects or to surface effects, while variables as concentration (a large number of chemical species can coexist and interact concurrently), temperature and pressure can have large gradients in natural systems. By taking into account this, data of 91 water samples have been modelled by using statistical methodologies for compositional data. The application of log–contrast analysis has allowed to obtain statistical parameters to be correlated with the calculated Eh values. In this way, natural conditions in which chemical equilibrium is hypothesised, as well as underlying fast reactions, are compared with those described by a stochastic approach

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In any data mining applications, automated text and text and image retrieval of information is needed. This becomes essential with the growth of the Internet and digital libraries. Our approach is based on the latent semantic indexing (LSI) and the corresponding term-by-document matrix suggested by Berry and his co-authors. Instead of using deterministic methods to find the required number of first "k" singular triplets, we propose a stochastic approach. First, we use Monte Carlo method to sample and to build much smaller size term-by-document matrix (e.g. we build k x k matrix) from where we then find the first "k" triplets using standard deterministic methods. Second, we investigate how we can reduce the problem to finding the "k"-largest eigenvalues using parallel Monte Carlo methods. We apply these methods to the initial matrix and also to the reduced one. The algorithms are running on a cluster of workstations under MPI and results of the experiments arising in textual retrieval of Web documents as well as comparison of the stochastic methods proposed are presented. (C) 2003 IMACS. Published by Elsevier Science B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Terahertz (THz) frequency radiation, 0.1 THz to 20 THz, is being investigated for biomedical imaging applications following the introduction of pulsed THz sources that produce picosecond pulses and function at room temperature. Owing to the broadband nature of the radiation, spectral and temporal information is available from radiation that has interacted with a sample; this information is exploited in the development of biomedical imaging tools and sensors. In this work, models to aid interpretation of broadband THz spectra were developed and evaluated. THz radiation lies on the boundary between regions best considered using a deterministic electromagnetic approach and those better analysed using a stochastic approach incorporating quantum mechanical effects, so two computational models to simulate the propagation of THz radiation in an absorbing medium were compared. The first was a thin film analysis and the second a stochastic Monte Carlo model. The Cole–Cole model was used to predict the variation with frequency of the physical properties of the sample and scattering was neglected. The two models were compared with measurements from a highly absorbing water-based phantom. The Monte Carlo model gave a prediction closer to experiment over 0.1 to 3 THz. Knowledge of the frequency-dependent physical properties, including the scattering characteristics, of the absorbing media is necessary. The thin film model is computationally simple to implement but is restricted by the geometry of the sample it can describe. The Monte Carlo framework, despite being initially more complex, provides greater flexibility to investigate more complicated sample geometries.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Quando as empresas decidem se devem ou não investir em determinado projeto de investimentos a longo prazo (horizonte de 5 a 10 anos), algumas metodologias alternativas ao Fluxo de Caixa Descontado (FCD) podem se tornar úteis tanto para confirmar a viabilidade do negócio como para indicar o melhor momento para iniciar o Empreendimento. As análises que levam em conta a incerteza dos fluxos de caixa futuros e flexibilidade na data de início do projeto podem ser construídos com a abordagem estocástica, usando metodologias como a solução de equações diferenciais que descrevem o movimento browniano. Sob determinadas condições, as oportunidades de investimentos em projetos podem ser tratados como se fossem opções reais de compra, sem data de vencimento, como no modelo proposto por McDonald-Siegel (1986), para a tomada de decisões e momento ótimo para o investimento. Este trabalho analisa a viabilidade de investimentos no mercado de telecomunicações usando modelos não determinísticos, onde a variável mais relevante é a dispersão dos retornos, ou seja, que a variância representa o risco associado a determinado empreendimento.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work we investigate the stochastic behavior of a large class of systems with variable damping which are described by a time-dependent Lagrangian. Our stochastic approach is based on the Langevin treatment describing the motion of a classical Brownian particle of mass m. Two situations of physical interest are considered. In the first one, we discuss in detail an application of the standard Langevin treatment (white noise) for the variable damping system. In the second one, a more general viewpoint is adopted by assuming a given expression to the so-called collored noise. For both cases, the basic diffententiaql equations are analytically solved and al the quantities physically relevant are explicitly determined. The results depend on an arbitrary q parameter measuring how the behavior of the system departs from the standard brownian particle with constant viscosity. Several types of sthocastic behavior (superdiffusive and subdiffusive) are obteinded when the free pamameter varies continuosly. However, all the results of the conventional Langevin approach with constant damping are recovered in the limit q = 1

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present a stochastic approach to nonequilibrium thermodynamics based on the expression of the entropy production rate advanced by Schnakenberg for systems described by a master equation. From the microscopic Schnakenberg expression we get the macroscopic bilinear form for the entropy production rate in terms of fluxes and forces. This is performed by placing the system in contact with two reservoirs with distinct sets of thermodynamic fields and by assuming an appropriate form for the transition rate. The approach is applied to an interacting lattice gas model in contact with two heat and particle reservoirs. On a square lattice, a continuous symmetry breaking phase transition takes place such that at the nonequilibrium ordered phase a heat flow sets in even when the temperatures of the reservoirs are the same. The entropy production rate is found to have a singularity at the critical point of the linear-logarithm type.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The thesis is framed within the field of the stochastic approach to flow and transport themes of solutes in natural porous materials. The methodology used to characterise the uncertainty associated with the modular predictions is completely general and can be reproduced in various contexts. The theme of the research includes the following among its main objectives: (a) the development of a Global Sensitivity Analysis on contaminant transport models in the subsoil to research the effects of the uncertainty of the most important parameters; (b) the application of advanced techniques, such as Polynomial Chaos Expansion (PCE), for obtaining surrogate models starting from those which conduct traditionally developed analyses in the context of Monte Carlo simulations, characterised by an often not negligible computational burden; (c) the analyses and the understanding of the key processes at the basis of the transport of solutes in natural porous materials using the aforementioned technical and analysis resources. In the complete picture, the thesis looks at the application of a Continuous Injection transport model of contaminants, of the PCE technique which has already been developed and applied by the thesis supervisors, by way of numerical code, to a Slug Injection model. The methodology was applied to the aforementioned model with original contribution deriving from surrogate models with various degrees of approximation and developing a Global Sensitivity Analysis aimed at the determination of Sobol’ indices.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Many methodologies dealing with prediction or simulation of soft tissue deformations on medical image data require preprocessing of the data in order to produce a different shape representation that complies with standard methodologies, such as mass–spring networks, finite element method s (FEM). On the other hand, methodologies working directly on the image space normally do not take into account mechanical behavior of tissues and tend to lack physics foundations driving soft tissue deformations. This chapter presents a method to simulate soft tissue deformations based on coupled concepts from image analysis and mechanics theory. The proposed methodology is based on a robust stochastic approach that takes into account material properties retrieved directly from the image, concepts from continuum mechanics and FEM. The optimization framework is solved within a hierarchical Markov random field (HMRF) which is implemented on the graphics processor unit (GPU See Graphics processing unit ).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The 20th Annual Biochemical Engineering Symposium was held at Kansas State University on April 21,1990. The objectives of the symposium were to provide: (i) a forum for informal discussion of biochemical engineering research being conducted at the participating institutions and (ii) an opportunity for students to present and publish their work. Twenty-eight papers presented at the symposium are included in this proceedings. Some of the papers describe the progress of ongoing projects, and others contain the results of completed projects. Only brief summaries are given of the papers that will be published in full elsewhere. The program of the symposium and a list of the participants are included in the proceedings. ContentsCell Separations and Recycle Using an Inclined Settler, Ching-Yuan Lee, Robert H. Davis and Robert A. Sclafani Micromixing and Metabolism in Bioreactors: Characterization of a 14 L Fermenter, K.S. Wenger and E.H. Dunlop Production, Purification, and Hydrolysis Kinetics of Wild-Type and Mutant Glucoamylases from Aspergillus Awamori, Ufuk Bakir, Paul D. Oates, Hsiu-Mei Chen and Peter J. Reilly Dynamic Modeling of the Immune System, Barry Vant-Hull and Dhinakar S. Kompala Dynamic Modeling of Active Transport Across a Biological Cell: A Stochastic Approach, B.C. Shen, S.T. Chou, Y.Y. Chiu and L.T. Fan Electrokinetic Isolation of Bacterial Vesicles and Ribosomes, Debra T.L. Hawker, Robert H. Davis, Paul W. Todd, and Robert Lawson Application of Dynamic Programming for Fermentative Ethanol Production by Zymomonas mobilis, Sheyla L. Rivera and M. Nazmul Karim Biodegradation of PCP by Pseudomonas cepacia, R. Rayavarapu, S.K. Banerji, and R.K. Bajpai Modeling the Bioremediation of Contaminated Soil Aggregates: a Phenomenological Approach, S. Dhawan, L.E. Erickson and L.T. Fan Biospecific Adsorption of Glucoamylase-I from Aspergillus niger on Raw Starch, Bipin K. Dalmia and Zivko L. Nikolov Overexpression in Recombinant Mammalian Cells: Effect on Growth Rate and Genetic Instability, Jeffrey A. Kern and Dhinakar S. Kompala Structured Mathematical Modeling of Xylose Fermentation, A.K. Hilaly, M.N. Karim, I. C. Linden and S. Lastick A New Culture Medium for Carbon-limited Growth of Bacillus thuringiensis, W. -M. Liu and R.K. Bajpai Determination of Sugars and Sugar Alcohols by High Performance Ion Chromatography, T. J. Paskach, H.-P. Lieker, P.J. Reilly, and K. Thielecke Characterization of Poly-Asp Tailed B-Galactosidase, M.Q. Niederauer, C.E. Glatz, l.A. Suominen, C.F. Ford, and M.A. Rougvie Computation of Conformations and Energies of cr-Glucosyl Disaccharides, Jing Zepg, Michael K. Dowd, and Peter J. Reilly Pentachlorophenol Interactions with Soil, Shein-Ming Wei, Shankha K. Banerji, and Rakesh K. Bajpai Oxygen Transfer to Viscous Liquid Media in Three-Phase Fluidized Beds of Floating Bubble Freakers, Y. Kang, L.T. Fan, B.T. Min and S.D. Kim Studies on the Invitro Development of Chick Embryo, A. Venkatraman and T. Panda The Evolution of a Silicone Based Phase-Separated Gravity-Independent Bioreactor, Peter E. Villeneuve and Eric H. Dunlop Biodegradation of Diethyl Phthalate, Guorong Zhang, Kenneth F. Reardon and Vincent G. Murphy Microcosm Treatability of Soil Contaminated with Petroleum Hydrocarbons, P. Tuitemwong, S. Dhawan, B.M. Sly, L.E. Erickson and J.R. Schlup

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Esta tesis realiza una contribución metodológica al problema de la gestión óptima de embalses hidroeléctricos durante eventos de avenidas, considerando un enfoque estocástico y multiobjetivo. Para ello se propone una metodología de evaluación de estrategias de laminación en un contexto probabilístico y multiobjetivo. Además se desarrolla un entorno dinámico de laminación en tiempo real con pronósticos que combina un modelo de optimización y algoritmos de simulación. Estas herramientas asisten a los gestores de las presas en la toma de decisión respecto de cuál es la operación más adecuada del embalse. Luego de una detallada revisión de la bibliografía, se observó que los trabajos en el ámbito de la gestión óptima de embalses en avenidas utilizan, en general, un número reducido de series de caudales o hidrogramas para caracterizar los posibles escenarios. Limitando el funcionamiento satisfactorio de un modelo determinado a situaciones hidrológicas similares. Por otra parte, la mayoría de estudios disponibles en este ámbito abordan el problema de la laminación en embalses multipropósito durante la temporada de avenidas, con varios meses de duración. Estas características difieren de la realidad de la gestión de embalses en España. Con los avances computacionales en materia de gestión de información en tiempo real, se observó una tendencia a la implementación de herramientas de operación en tiempo real con pronósticos para determinar la operación a corto plazo (involucrando el control de avenidas). La metodología de evaluación de estrategias propuesta en esta tesis se basa en determinar el comportamiento de éstas frente a un espectro de avenidas características de la solicitación hidrológica. Con ese fin, se combina un sistema de evaluación mediante indicadores y un entorno de generación estocástica de avenidas, obteniéndose un sistema implícitamente estocástico. El sistema de evaluación consta de tres etapas: caracterización, síntesis y comparación, a fin de poder manejar la compleja estructura de datos resultante y realizar la evaluación. En la primera etapa se definen variables de caracterización, vinculadas a los aspectos que se quieren evaluar (seguridad de la presa, control de inundaciones, generación de energía, etc.). Estas variables caracterizan el comportamiento del modelo para un aspecto y evento determinado. En la segunda etapa, la información de estas variables se sintetiza en un conjunto de indicadores, lo más reducido posible. Finalmente, la comparación se lleva a cabo a partir de la comparación de esos indicadores, bien sea mediante la agregación de dichos objetivos en un indicador único, o bien mediante la aplicación del criterio de dominancia de Pareto obteniéndose un conjunto de soluciones aptas. Esta metodología se aplicó para calibrar los parámetros de un modelo de optimización de embalse en laminación y su comparación con otra regla de operación, mediante el enfoque por agregación. Luego se amplió la metodología para evaluar y comparar reglas de operación existentes para el control de avenidas en embalses hidroeléctricos, utilizando el criterio de dominancia. La versatilidad de la metodología permite otras aplicaciones, tales como la determinación de niveles o volúmenes de seguridad, o la selección de las dimensiones del aliviadero entre varias alternativas. Por su parte, el entorno dinámico de laminación al presentar un enfoque combinado de optimización-simulación, permite aprovechar las ventajas de ambos tipos de modelos, facilitando la interacción con los operadores de las presas. Se mejoran los resultados respecto de los obtenidos con una regla de operación reactiva, aun cuando los pronósticos se desvían considerablemente del hidrograma real. Esto contribuye a reducir la tan mencionada brecha entre el desarrollo teórico y la aplicación práctica asociada a los modelos de gestión óptima de embalses. This thesis presents a methodological contribution to address the problem about how to operate a hydropower reservoir during floods in order to achieve an optimal management considering a multiobjective and stochastic approach. A methodology is proposed to assess the flood control strategies in a multiobjective and probabilistic framework. Additionally, a dynamic flood control environ was developed for real-time operation, including forecasts. This dynamic platform combines simulation and optimization models. These tools may assist to dam managers in the decision making process, regarding the most appropriate reservoir operation to be implemented. After a detailed review of the bibliography, it was observed that most of the existing studies in the sphere of flood control reservoir operation consider a reduce number of hydrographs to characterize the reservoir inflows. Consequently, the adequate functioning of a certain strategy may be limited to similar hydrologic scenarios. In the other hand, most of the works in this context tackle the problem of multipurpose flood control operation considering the entire flood season, lasting some months. These considerations differ from the real necessity in the Spanish context. The implementation of real-time reservoir operation is gaining popularity due to computational advances and improvements in real-time data management. The methodology proposed in this thesis for assessing the strategies is based on determining their behavior for a wide range of floods, which are representative of the hydrological forcing of the dam. An evaluation algorithm is combined with a stochastic flood generation system to obtain an implicit stochastic analysis framework. The evaluation system consists in three stages: characterizing, synthesizing and comparing, in order to handle the complex structure of results and, finally, conduct the evaluation process. In the first stage some characterization variables are defined. These variables should be related to the different aspects to be evaluated (such as dam safety, flood protection, hydropower, etc.). Each of these variables characterizes the behavior of a certain operating strategy for a given aspect and event. In the second stage this information is synthesized obtaining a reduced group of indicators or objective functions. Finally, the indicators are compared by means of an aggregated approach or by a dominance criterion approach. In the first case, a single optimum solution may be achieved. However in the second case, a set of good solutions is obtained. This methodology was applied for calibrating the parameters of a flood control model and to compare it with other operating policy, using an aggregated method. After that, the methodology was extent to assess and compared some existing hydropower reservoir flood control operation, considering the Pareto approach. The versatility of the method allows many other applications, such as determining the safety levels, defining the spillways characteristics, among others. The dynamic framework for flood control combines optimization and simulation models, exploiting the advantages of both techniques. This facilitates the interaction between dam operators and the model. Improvements are obtained applying this system when compared with a reactive operating policy, even if the forecasts deviate significantly from the observed hydrograph. This approach contributes to reduce the gap between the theoretical development in the field of reservoir management and its practical applications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper focuses on the railway rolling stock circulation problem in rapid transit networks where the known demand and train schedule must be met by a given fleet. In rapid transit networks the frequencies are high and distances are relatively short. Although the distances are not very large, service times are high due to the large number of intermediate stops required to allow proper passenger flow. The previous circumstances and the reduced capacity of the depot stations and that the rolling stock is shared between the different lines, force the introduction of empty trains and a careful control on shunting operation. In practice the future demand is generally unknown and the decisions must be based on uncertain forecast. We have developed a stochastic rolling stock formulation of the problem. The computational experiments were developed using a commercial line of the Madrid suburban rail network operated by RENFE (The main Spanish operator of suburban trains of passengers). Comparing the results obtained by deterministic scenarios and stochastic approach some useful conclusions may be obtained.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The country-product-dummy (CPD) method, originally proposed in Summers (1973), has recently been revisited in its weighted formulation to handle a variety of data related situations (Rao and Timmer, 2000, 2003; Heravi et al., 2001; Rao, 2001; Aten and Menezes, 2002; Heston and Aten, 2002; Deaton et al., 2004). The CPD method is also increasingly being used in the context of hedonic modelling instead of its original purpose of filling holes in Summers (1973). However, the CPD method is seen, among practitioners, as a black box due to its regression formulation. The main objective of the paper is to establish equivalence of purchasing power parities and international prices derived from the application of the weighted-CPD method with those arising out of the Rao-system for multilateral comparisons. A major implication of this result is that the weighted-CPD method would then be a natural method of aggregation at all levels of aggregation within the context of international comparisons.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We know that classical thermodynamics even out of equilibrium always leads to stable situation which means degradation and consequently d sorder. Many experimental evidences in different fields show that gradation and order (symmetry breaking) during time and space evolution may appear when maintaining the system far from equilibrium. Order through fluctuations, stochastic processes which occur around critical points and dissipative structures are the fundamental background of the Prigogine-Glansdorff and Nicolis theory. The thermodynamics of macroscopic fluctuations to stochastic approach as well as the kinetic deterministic laws allow a better understanding of the peculiar fascinating behavior of organized matter. The reason for the occurence of this situation is directly related to intrinsic non linearities of the different mechanisms responsible for the evolution of the system. Moreover, when dealing with interfaces separating two immiscible phases (liquid - gas, liquid -liquid, liquid - solid, solid - solid), the situation is rather more complicated. Indeed coupling terms playing the major role in the conditions of instability arise from the peculiar singular static and dynamic properties of the surface and of its vicinity. In other words, the non linearities are not only intrinsic to classical steps involving feedbacks, but they may be imbedded with the non-autonomous character of the surface properties. In order to illustrate our goal we discuss three examples of ordering in far from equilibrium conditions: i) formation of chemical structures during the oxidation of metals and alloys; ii) formation of mechanical structures during the oxidation of metals iii) formation of patterns at a solid-liquid moving interface due to supercooling condition in a melt of alloy. © 1984, Walter de Gruyter. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Esta dissertação incide sobre o tema da coordenação entre sistemas eólicos e fotovoltaicos que participam no mercado de eletricidade. A incerteza da potência eólica e fotovoltaica é uma caraterística predominante nesta coordenação, devendo ser considerada no planeamento ótimo de sistemas eólico-fotovoltaicos. A fim de modelizar a incerteza é apresentada uma metodologia de otimização estocástica baseada em programação linear para maximizar o lucro esperado de uma empresa produtora de energia elétrica que participa no mercado diário. A coordenação entre sistemas eólicos e fotovoltaicos visa mitigar os desequilíbrios de energia, resultantes das ofertas horárias submetidas no mercado diário e, consequentemente, reduzir as penalizações financeiras. Os resultados da coordenação entre um sistema eólico e um sistema fotovoltaico são comparados com os resultados obtidos para a operação não coordenada. Estes resultados permitem concluir que a metodologia desenvolvida aplicada à coordenação apresenta um lucro esperado superior ao lucro obtido para a operação não coordenada; Abstract Stochastic Optimization Methodology for Wind-Photovoltaic Coordination This dissertation focuses on the issue of coordination between wind and photovoltaic systems participating in electricity markets. The uncertainty of wind and photovoltaic power is a main characteristic of these systems, which must be included in the optimal scheduling of the coordination of wind with photovoltaic systems. In order to model the uncertainty is presented a stochastic approach based on linear programming to maximize the profit of a wind photovoltaic power producer which participates in electricity markets. The coordination of wind with photovoltaic systems aims to mitigate the energy deviations, as a result of the participation in day-ahead market and therefore reducing economic penalties. The results obtained by the coordination are compared to results obtained by the separated operation of wind and photovoltaic systems. The results allow concluding that the proposed approach applied to the coordination presents an expected profit higher than the expected profit without coordination.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We apply the quantum trajectory method to current noise in resonant tunneling devices. The results from dynamical simulation are compared with those from unconditional master equation approach. We show that the stochastic Schrodinger equation approach is useful in modeling the dynamical processes in mesoscopic electronic systems.