997 resultados para Still Image Compression


Relevância:

100.00% 100.00%

Publicador:

Resumo:

LHE (logarithmical hopping encoding) is a computationally efficient image compression algorithm that exploits the Weber–Fechner law to encode the error between colour component predictions and the actual value of such components. More concretely, for each pixel, luminance and chrominance predictions are calculated as a function of the surrounding pixels and then the error between the predictions and the actual values are logarithmically quantised. The main advantage of LHE is that although it is capable of achieving a low-bit rate encoding with high quality results in terms of peak signal-to-noise ratio (PSNR) and image quality metrics with full-reference (FSIM) and non-reference (blind/referenceless image spatial quality evaluator), its time complexity is O( n) and its memory complexity is O(1). Furthermore, an enhanced version of the algorithm is proposed, where the output codes provided by the logarithmical quantiser are used in a pre-processing stage to estimate the perceptual relevance of the image blocks. This allows the algorithm to downsample the blocks with low perceptual relevance, thus improving the compression rate. The performance of LHE is especially remarkable when the bit per pixel rate is low, showing much better quality, in terms of PSNR and FSIM, than JPEG and slightly lower quality than JPEG-2000 but being more computationally efficient.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a novel error-free (infinite-precision) architecture for the fast implementation of 8x8 2-D Discrete Cosine Transform. The architecture uses a new algebraic integer encoding of a 1-D radix-8 DCT that allows the separable computation of a 2-D 8x8 DCT without any intermediate number representation conversions. This is a considerable improvement on previously introduced algebraic integer encoding techniques to compute both DCT and IDCT which eliminates the requirements to approximate the transformation matrix ele- ments by obtaining their exact representations and hence mapping the transcendental functions without any errors. Apart from the multiplication-free nature, this new mapping scheme fits to this algorithm, eliminating any computational or quantization errors and resulting short-word-length and high-speed-design.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Medical imaging technology and applications are continuously evolving, dealing with images of increasing spatial and temporal resolutions, which allow easier and more accurate medical diagnosis. However, this increase in resolution demands a growing amount of data to be stored and transmitted. Despite the high coding efficiency achieved by the most recent image and video coding standards in lossy compression, they are not well suited for quality-critical medical image compression where either near-lossless or lossless coding is required. In this dissertation, two different approaches to improve lossless coding of volumetric medical images, such as Magnetic Resonance and Computed Tomography, were studied and implemented using the latest standard High Efficiency Video Encoder (HEVC). In a first approach, the use of geometric transformations to perform inter-slice prediction was investigated. For the second approach, a pixel-wise prediction technique, based on Least-Squares prediction, that exploits inter-slice redundancy was proposed to extend the current HEVC lossless tools. Experimental results show a bitrate reduction between 45% and 49%, when compared with DICOM recommended encoders, and 13.7% when compared with standard HEVC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There are a large number of image processing applications that work with different performance requirements and available resources. Recent advances in image compression focus on reducing image size and processing time, but offer no real-time solutions for providing time/quality flexibility of the resulting image, such as using them to transmit the image contents of web pages. In this paper we propose a method for encoding still images based on the JPEG standard that allows the compression/decompression time cost and image quality to be adjusted to the needs of each application and to the bandwidth conditions of the network. The real-time control is based on a collection of adjustable parameters relating both to aspects of implementation and to the hardware with which the algorithm is processed. The proposed encoding system is evaluated in terms of compression ratio, processing delay and quality of the compressed image when compared with the standard method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Image registration is an important component of image analysis used to align two or more images. In this paper, we present a new framework for image registration based on compression. The basic idea underlying our approach is the conjecture that two images are correctly registered when we can maximally compress one image given the information in the other. The contribution of this paper is twofold. First, we show that the image registration process can be dealt with from the perspective of a compression problem. Second, we demonstrate that the similarity metric, introduced by Li et al., performs well in image registration. Two different versions of the similarity metric have been used: the Kolmogorov version, computed using standard real-world compressors, and the Shannon version, calculated from an estimation of the entropy rate of the images

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The work is intended to study the following important aspects of document image processing and develop new methods. (1) Segmentation ofdocument images using adaptive interval valued neuro-fuzzy method. (2) Improving the segmentation procedure using Simulated Annealing technique. (3) Development of optimized compression algorithms using Genetic Algorithm and parallel Genetic Algorithm (4) Feature extraction of document images (5) Development of IV fuzzy rules. This work also helps for feature extraction and foreground and background identification. The proposed work incorporates Evolutionary and hybrid methods for segmentation and compression of document images. A study of different neural networks used in image processing, the study of developments in the area of fuzzy logic etc is carried out in this work

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Image registration is an important component of image analysis used to align two or more images. In this paper, we present a new framework for image registration based on compression. The basic idea underlying our approach is the conjecture that two images are correctly registered when we can maximally compress one image given the information in the other. The contribution of this paper is twofold. First, we show that the image registration process can be dealt with from the perspective of a compression problem. Second, we demonstrate that the similarity metric, introduced by Li et al., performs well in image registration. Two different versions of the similarity metric have been used: the Kolmogorov version, computed using standard real-world compressors, and the Shannon version, calculated from an estimation of the entropy rate of the images

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Digital image processing is exploited in many diverse applications but the size of digital images places excessive demands on current storage and transmission technology. Image data compression is required to permit further use of digital image processing. Conventional image compression techniques based on statistical analysis have reached a saturation level so it is necessary to explore more radical methods. This thesis is concerned with novel methods, based on the use of fractals, for achieving significant compression of image data within reasonable processing time without introducing excessive distortion. Images are modelled as fractal data and this model is exploited directly by compression schemes. The validity of this is demonstrated by showing that the fractal complexity measure of fractal dimension is an excellent predictor of image compressibility. A method of fractal waveform coding is developed which has low computational demands and performs better than conventional waveform coding methods such as PCM and DPCM. Fractal techniques based on the use of space-filling curves are developed as a mechanism for hierarchical application of conventional techniques. Two particular applications are highlighted: the re-ordering of data during image scanning and the mapping of multi-dimensional data to one dimension. It is shown that there are many possible space-filling curves which may be used to scan images and that selection of an optimum curve leads to significantly improved data compression. The multi-dimensional mapping property of space-filling curves is used to speed up substantially the lookup process in vector quantisation. Iterated function systems are compared with vector quantisers and the computational complexity or iterated function system encoding is also reduced by using the efficient matching algcnithms identified for vector quantisers.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper describes an audio watermarking scheme based on lossy compression. The main idea is taken from an image watermarking approach where the JPEG compression algorithm is used to determine where and how the mark should be placed. Similarly, in the audio scheme suggested in this paper, an MPEG 1 Layer 3 algorithm is chosen for compression to determine the position of the mark bits and, thus, the psychoacoustic masking of the MPEG 1 Layer 3compression is implicitly used. This methodology provides with a high robustness degree against compression attacks. The suggested scheme is also shown to succeed against most of the StirMark benchmark attacks for audio.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The problem of selecting anappropriate wavelet filter is always present in signal compression based on thewavelet transform. In this report, we propose a method to select a wavelet filter from a predefined set of filters for the compression of spectra from a multispectral image. The wavelet filter selection is based on the Learning Vector Quantization (LVQ). In the training phase for the test images, the best wavelet filter for each spectrum has been found by a careful compression-decompression evaluation. Certain spectral features are used in characterizing the pixel spectra. The LVQ is used to form the best wavelet filter class for different types of spectra from multispectral images. When a new image is to be compressed, a set of spectra from that image is selected, the spectra are classified by the trained LVQand the filter associated to the largest class is selected for the compression of every spectrum from the multispectral image. The results show, that almost inevery case our method finds the most suitable wavelet filter from the pre-defined set for the compression.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Technological progress has made a huge amount of data available at increasing spatial and spectral resolutions. Therefore, the compression of hyperspectral data is an area of active research. In somefields, the original quality of a hyperspectral image cannot be compromised andin these cases, lossless compression is mandatory. The main goal of this thesisis to provide improved methods for the lossless compression of hyperspectral images. Both prediction- and transform-based methods are studied. Two kinds of prediction based methods are being studied. In the first method the spectra of a hyperspectral image are first clustered and and an optimized linear predictor is calculated for each cluster. In the second prediction method linear prediction coefficients are not fixed but are recalculated for each pixel. A parallel implementation of the above-mentioned linear prediction method is also presented. Also,two transform-based methods are being presented. Vector Quantization (VQ) was used together with a new coding of the residual image. In addition we have developed a new back end for a compression method utilizing Principal Component Analysis (PCA) and Integer Wavelet Transform (IWT). The performance of the compressionmethods are compared to that of other compression methods. The results show that the proposed linear prediction methods outperform the previous methods. In addition, a novel fast exact nearest-neighbor search method is developed. The search method is used to speed up the Linde-Buzo-Gray (LBG) clustering method.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Vaatimus kuvatiedon tiivistämisestä on tullut entistä ilmeisemmäksi viimeisen kymmenen vuoden aikana kuvatietoon perustuvien sovellutusten myötä. Nykyisin kiinnitetään erityistä huomiota spektrikuviin, joiden tallettaminen ja siirto vaativat runsaasti levytilaa ja kaistaa. Aallokemuunnos on osoittautunut hyväksi ratkaisuksi häviöllisessä tiedontiivistämisessä. Sen toteutus alikaistakoodauksessa perustuu aallokesuodattimiin ja ongelmana on sopivan aallokesuodattimen valinta erilaisille tiivistettäville kuville. Tässä työssä esitetään katsaus tiivistysmenetelmiin, jotka perustuvat aallokemuunnokseen. Ortogonaalisten suodattimien määritys parametrisoimalla on työn painopisteenä. Työssä todetaan myös kahden erilaisen lähestymistavan samanlaisuus algebrallisten yhtälöiden avulla. Kokeellinen osa sisältää joukon testejä, joilla perustellaan parametrisoinnin tarvetta. Erilaisille kuville tarvitaan erilaisia suodattimia sekä erilaiset tiivistyskertoimet saavutetaan eri suodattimilla. Lopuksi toteutetaan spektrikuvien tiivistys aallokemuunnoksen avulla.