272 resultados para Stereochemistry.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A broad perspective of various factors influencing alkene selenenylation has been developed by concurrent detailed analysis of key experimental and theoretical data, such as asymmetric induction, stereochemistry, relative reactivities, and comparison with that of alkene sulfenylation. Alkyl group branching a to the double bond was shown to have the greatest effect on alkene reactivity and the stereochemical outcome of corresponding addition reactions. This is in sharp contrast with other additions to alkenes, which depend more on the degree of substitution on C=C or upon substituent electronic effects. Electronic and steric effects influencing asymmetric induction, stereochemistry, regiochemistry, and relative reactivities in the addition of PhSeOTf to alkenes are compared and contrasted with those of PhSCl.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the cell, the binding of proteins to specific sequences of double helical DNA is essential for controlling the processes of protein synthesis (at the level of DNA transcription) and cell proliferation (at the level of DNA replication). In the laboratory, the sequence-specific DNA binding/cleaving properties of restriction endonuclease enzymes (secreted by microorganisms to protect them from foreign DNA molecules) have helped to fuel a revolution in molecular biology. The strength and specificity of a protein:DNA interaction depend upon structural features inherent to the protein and DNA sequences, but it is now appreciated that these features (and therefore protein:DNA complexation) may be altered (regulated) by other protein:DNA complexes, or by environmental factors such as temperature or the presence of specific organic molecules or inorganic ions. It is also now appreciated that molecules much smaller than proteins (including antibiotics of molecular weight less than 2000 and oligonucleotides) can bind to double-helical DNA in sequence-specific fashion. Elucidation of structural motifs and microscopic interactions responsible for the specific molecular recognition of DNA leads to greater understanding of natural processes and provides a basis for the design of novel sequence-specific DNA binding molecules. This thesis describes the synthesis and DNA binding/cleaving characteristics of molecules designed to probe structural, stereochemical, and environmental factors that regulate sequence-specific DNA recognition.

Chapter One introduces the DNA minor groove binding antibiotics Netropsin and Distamycin A, which are di- and tri(N-methylpyrrolecarboxamide) peptides, respectively. The method of DNA affinity cleaving, which has been employed to determine DNA binding properties of designed synthetic molecules is described. The design and synthesis of a series of Netropsin dimers linked in tail-to-tail fashion (by oxalic, malonic, succinic, or fumaric acid), or in head-to-tail fashion (by glycine, β-alanine, and γ-aminobutanoic acid (Gaba)) are presented. These Bis(Netropsin)s were appended with the iron-chelating functionality EDTA in order to make use of the technique of DNA affinity cleaving. Bis(Netropsin)-EDTA compounds are analogs of penta(N-methylpyrrolecarboxamide)-EDTA (P5E), which may be considered a head-to-tail Netropsin dimer linked by Nmethylpyrrolecarboxamide. Low- and high-resolution analysis of pBR322 DNA affinity cleaving by the iron complexes of these molecules indicated that small changes in the length and nature of the linker had significant effects on DNA binding/cleaving efficiency (a measure of DNA binding affinity). DNA binding/cleaving efficiency was found to decrease with changes in the linker in the order β-alanine > succinamide > fumaramide > N-methylpyrrolecarboxamide > malonamide >glycine, γ-aminobutanamide > oxalamide. In general, the Bis(Netropsin)-EDTA:Fe compounds retained the specificity for seven contiguous A:T base pairs characteristic of P5E:Fe binding. However, Bis(Netropsin)Oxalamide- EDTA:Fe exhibited decreased specificity for A:T base pairs, and Bis(Netropsin)-Gaba-EDT A:Fe exhibited some DNA binding sites of less than seven base pairs. Bis(Netropsin)s linked with diacids have C2-symmmetrical DNA binding subunits and exhibited little DNA binding orientation preference. Bis(Netropsin)s linked with amino acids lack C2-symmetrical DNA binding subunits and exhibited higher orientation preferences. A model for the high DNA binding orientation preferences observed with head-to-tail DNA minor groove binding molecules is presented.

Chapter Two describes the design, synthesis, and DNA binding properties of a series of chiral molecules: Bis(Netropsin)-EDTA compounds with linkers derived from (R,R)-, (S,S)-, and (RS,SR)-tartaric acids, (R,R)-, (S,S)-, and (RS,SR)-tartaric acid acetonides, (R)- and (S)-malic acids, N ,N-dimethylaminoaspartic acid, and (R)- and (S)-alanine, as well as three constitutional isomers in which an N-methylpyrrolecarboxamide (P1) subunit and a tri(N-methylpyrrolecarboxamide)-EDTA (P3-EDTA) subunit were linked by succinic acid, (R ,R)-, and (S ,S)-tartaric acids. DNA binding/cleaving efficiencies among this series of molecules and the Bis(Netropsin)s described in Chapter One were found to decrease with changes in the linker in the order β-alanine > succinamide > P1-succinamide-P3 > fumaramide > (S)-malicamide > N-methylpyrrolecarboxamide > (R)-malicamide > malonamide > N ,N-dimethylaminoaspanamide > glycine = Gaba = (S,S)-tartaramide = P1-(S,S)-tanaramide-P3 > oxalamide > (RS,SR)-tartaramide = P1- (R,R)-tanaramide-P3 > (R,R)-tartaramide (no sequence-specific DNA binding was detected for Bis(Netropsin)s linked by (R)- or (S)-alanine or by tartaric acid acetonides). The chiral molecules retained DNA binding specificity for seven contiguous A:T base pairs. From the DNA affinity cleaving data it could be determined that: 1) Addition of one or two substituents to the linker of Bis(Netropsin)-Succinamide resulted in stepwise decreases in DNA binding affinity; 2) molecules with single hydroxyl substituents bound DNA more strongly than molecules with single dimethylamino substituents; 3) hydroxyl-substituted molecules of (S) configuration bound more strongly to DNA than molecules of (R) configuration. This stereochemical regulation of DNA binding is proposed to arise from the inherent right-handed twist of (S)-enantiomeric Bis(Netropsin)s versus the inherent lefthanded twist of (R)-enantiomeric Bis(Netropsin)s, which makes the (S)-enantiomers more complementary to the right-handed twist of B form DNA.

Chapter Three describes the design and synthesis of molecules for the study of metalloregulated DNA binding phenomena. Among a series of Bis(Netropsin)-EDTA compounds linked by homologous tethers bearing four, five, or six oxygen atoms, the Bis(Netropsin) linked by a pentaether tether exhibited strongly enhanced DNA binding/cleaving in the presence of strontium or barium cations. The observed metallospecificity was consistent with the known affinities of metal cations for the cyclic hexaether 18-crown-6 in water. High-resolution DNA affinity cleaving analysis indicated that DNA binding by this molecule in the presence of strontium or barium was not only stronger but of different sequence-specificity than the (weak) binding observed in the absence of metal cations. The metalloregulated binding sites were consistent with A:T binding by the Netropsin subunits and G:C binding by a strontium or barium:pentaether complex. A model for the observed positive metalloregulation and novel sequence-specificity is presented. The effects of 44 different cations on DNA affinity cleaving by P5E:Fe were examined. A series of Bis(Netropsin)-EDTA compounds linked by tethers bearing two, three, four, or five amino groups was also synthesized. These molecules exhibited strong and specific binding to A:T rich regions of DNA. It was found that the iron complexes of these molecules bound and cleaved DNA most efficiently at pH 6.0-6.5, while P5E:Fe bound and cleaved most efficiently at pH 7.5-8.0. Incubating the Bis(Netropsin) Polyamine-EDTA:Fe molecules with K2PdCl4 abolished their DNA binding/cleaving activity. It is proposed that the observed negative metalloregulation arises from kinetically inert Bis(Netropsin) Polyamine:Pd(II) complexes or aggregates, which are sterically unsuitable for DNA complexation. Finally, attempts to produce a synthetic metalloregulated DNA binding protein are described. For this study, five derivatives of a synthetic 52 amino acid residue DNA binding/cleaving protein were produced. The synthetic mutant proteins carried a novel pentaether ionophoric amino acid residue at different positions within the primary sequence. The proteins did not exhibit significant DNA binding/cleaving activity, but they served to illustrate the potential for introducing novel amino acid residues within DNA binding protein sequences, and for the development of the tricyclohexyl ester of EDTA as a superior reagent for the introduction of EDT A into synthetic proteins.

Chapter Four describes the discovery and characterization of a new DNA binding/cleaving agent, [SalenMn(III)]OAc. This metal complex produces single- and double-strand cleavage of DNA, with specificity for A:T rich regions, in the presence of oxygen atom donors such as iodosyl benzene, hydrogen peroxide, or peracids. Maximal cleavage by [SalenMn(III)]OAc was produced at pH 6-7. A comparison of DNA singleand double-strand cleavage by [SalenMn(III)]+ and other small molecules (Methidiumpropyl-EDTA:Fe, Distamycin-EDTA:Fe, Neocarzinostatin, Bleomycin:Fe) is presented. It was found that DNA cleavage by [SalenMn(III)]+ did not require the presence of dioxygen, and that base treatment of DNA subsequent to cleavage by [SalenMn(III)]+ afforded greater cleavage and alterations in the cleavage patterns. Analysis of DNA products formed upon DNA cleavage by [SalenMn(III)] indicated that cleavage was due to oxidation of the sugar-phosphate backbone of DNA. Several mechanisms consistent with the observed products and reaction requirements are discussed.

Chapter Five describes progress on some additional studies. In one study, the DNA binding/cleaving specificities of Distamycin-EDTA derivatives bearing pyrrole N-isopropyl substituents were found to be the same as those of derivatives bearing pyrrole N-methyl substituents. In a second study, the design of and synthetic progress towards a series of nucleopeptide activators of transcription are presented. Five synthetic plasmids designed to test for activation of in vitro run-off transcription by DNA triple helix-forming oligonucleotides or nucleopeptides are described.

Chapter Six contains the experimental documentation of the thesis work.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using quantum chemical calculations, we investigate surface reactions of copper precursors and diethylzinc as the reducing agent for effective Atomic Layer Deposition (ALD) of Cu. The adsorption of various commonly used Cu(II) precursors is explored. The precursors vary in the electronegativity and conjugation of the ligands and flexibility of the whole molecule. Our study shows that the overall stereochemistry of the precursor governs the adsorption onto its surface. Formation of different Cu(II)/Cu(I)/Cu(0) intermediate complexes from the respective Cu(II) compounds on the surface is also explored. The surface model is a (111) facet of a Cu55 cluster. Cu(I) compounds are found to cover the surface after the precursor pulse, irrespective of the precursor chosen. We provide new information about the surface chemistry of Cu(II) versus Cu(I) compounds. A pair of CuEt intermediates or the dimer Cu2Et2 reacts in order to deposit a new Cu atom and release gaseous butane. In this reaction, two electrons from the Et anions are donated to copper for reduction to metallic form. This indicates that a ligand exchange between the Cu and Zn is important for the success of this transmetalation reaction. The effect of the ligands in the precursor on the electron density before and after adsorption onto the surface has also been computed through population analysis. In the Cu(I) intermediate, charge is delocalized between the Cu precursor and the bare copper surface, indicating metallic bonding as the precursor densifies to the surface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ins(1,4,5,6)P4, a biologically active cell constituent, was recently advocated as a substrate of human Ins(3,4,5,6)P4 1-kinase (hITPK1), because stereochemical factors were believed relatively unimportant to specificity [Miller, G.J. Wilson, M.P. Majerus, P.W. and Hurley, J.H. (2005) Specificity determinants in inositol polyphosphate synthesis: crystal structure of inositol 1,3,4-triphosphate 5/6-kinase. Mol. Cell. 18, 201-212]. Contrarily, we provide three examples of hITPK1 stereospecificity. hITPK1 phosphorylates only the 1-hydroxyl of both Ins(3,5,6)P3 and the meso-compound, Ins(4,5,6)P3. Moreover, hITPK1 has >13,000-fold preference for Ins(3,4,5,6)P4 over its enantiomer, Ins(1,4,5,6)P4. The biological significance of hITPK1 being stereospecific, and not physiologically phosphorylating Ins(1,4,5,6)P4, is reinforced by our demonstrating that Ins(1,4,5,6)P4 is phosphorylated (K(m) = 0.18 microM) by inositolphosphate-multikinase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rhizopus delemar lipase catalyzed ester hydrolysis of the alpha-methoxy-beta-phenylpropanoate (I) affords the (R)-(+) and (S)-(-) isomers in > 84% enantiomeric excess. Abs. stereochem. was detd. by a single crystal X-ray anal. of a related synthetic analog. The activity of these two enantiomers on glucose transport in vitro and as anti-diabetic agents in vivo is reported and their unexpected equivalence attributed to an enzyme-mediated stereospecific isomerization of the (R)-(+) isomer. Binding studies using recombinant human PPAR-gamma (peroxisomal proliferator activated receptor gamma), now established as a mol. target for this compd. class, indicate a 20-fold higher binding affinity for the (S) antipode relative to the (R) antipode.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biotransformation of 3-substituted and 2,5-disubstituted phenols, using whole cells of P. putida UV4, yielded cyclohexenone cis-diols as single enantiomers; their structures and absolute configurations have been determined by NMR and ECD spectroscopy, X-ray crystallography, and stereochemical correlation involving a four step chemoenzymatic synthesis from the corresponding cis-dihydrodiol metabolites. An active site model has been proposed, to account for the formation of enantiopure cyclohexenone cis-diols with opposite absolute configurations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pseudoacid chlorides of 2,5-bis(4-fluorobenzoyl) terephthalic acid and 4,6-bis(4-fluorobenzoyl) isophthalic acid condense with primary amines to afford diastereomeric bis(hydroxyindolinone)s in good isolated yields and with diamines to give high molecular weight poly(hydroxyindolinone)s. Bis-N-pyrenemethyl bis(hydroxyindolinone)s assemble, even in dipolar solvents such as DMSO, with macrocyclic diimide-sulfones to give [3]pseudorotaxanes stabilized by electronically complementary aromatic π−π-stacking and shape-complementary van der Waals interactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Various conflicting data on the rearrangement and absolute stereochemistry of hydroxylignano-9,7'-lactones are resolved using O-18 labeled compounds, also confirmed by an X-ray analysis of a pure lignano-9,7'-lactone enantiomer, obtained for the first time. Under NaH/DMF rearrangement conditions a silyl protected hydroxylignano-9,9'-lactone underwent an unexpected silyl migration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Intrinsically chiral metal surfaces provide enantiospecific reaction environments without the need of coadsorbed modifiers. Amongst the intrinsically chiral copper surfaces, Cu{531} has the smallest unit cell and the highest density of chiral sites. XPS, NEXAFS and TPD were employed to investigate the adsorption and decomposition behaviour of the two chiral enantiomers of tartaric acid on this surface. The results obtained from XPS and NEXAFS show that at saturation coverage both enantiomers of tartaric acid adsorb in a μ4 configuration through the two carboxylic groups,which are rotatedwith respect to each other by 90°±≈15°within the surface plane. At intermediate coverage the R,R enantiomer adopts a similar configuration, but the S,S enantiomer is different and shows a high degree of dissociation. Growth of multilayers is observed at high exposures when the sample is kept at below 370 K. TPD experiments show that multilayers desorb between 390 K and 470 K and decomposition of the chemisorbed layer occurs between 470 K and 600 K. The desorption spectra support a two-step decomposition mechanism with a O_C_C_O or HO–HC_CH–OH intermediate that leads to production of CO2 and CO. Enantiomeric differences are observed in the desorption features related to the decomposition of the chemisorbed layer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The total synthesis of (-)-Blastmycinolactol, (+)-Blastmycinone, (-)-NFX-2, and (+)-Antimycinone was accomplished in few steps in high yields and ee, starting from enantiomerically enriched (S)-Z-vinylic hydroxytellurides. (C) 2010 Published by Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)