26 resultados para Steganography
Resumo:
This paper is concerned with the universal (blind) image steganalysis problem and introduces a novel method to detect especially spatial domain steganographic methods. The proposed steganalyzer models linear dependencies of image rows/columns in local neighborhoods using singular value decomposition transform and employs content independency provided by a Wiener filtering process. Experimental results show that the novel method has superior performance when compared with its counterparts in terms of spatial domain steganography. Experiments also demonstrate the reasonable ability of the method to detect discrete cosine transform-based steganography as well as the perturbation quantization method.
Resumo:
Blind steganalysis of JPEG images is addressed by modeling the correlations among the DCT coefficients using K -variate (K = 2) p.d.f. estimates (p.d.f.s) constructed by means of Markov random field (MRF) cliques. The reasoning of using high variate p.d.f.s together with MRF cliques for image steganalysis is explained via a classical detection problem. Although our approach has many improvements over the current state-of-the-art, it suffers from the high dimensionality and the sparseness of the high variate p.d.f.s. The dimensionality problem as well as the sparseness problem are solved heuristically by means of dimensionality reduction and feature selection algorithms. The detection accuracy of the proposed method(s) is evaluated over Memon's (30.000 images) and Goljan's (1912 images) image sets. It is shown that practically applicable steganalysis systems are possible with a suitable dimensionality reduction technique and these systems can provide, in general, improved detection accuracy over the current state-of-the-art. Experimental results also justify this assertion.
Resumo:
High Efficiency Video Coding (HEVC) is the most recent video codec coming after currently most popular H.264/MPEG4 codecs and has promising compression capabilities. It is conjectured that it will be a substitute for current video compression standards. However, to the best knowledge of the authors, none of the current video steganalysis methods designed or tested with HEVC video. In this paper, pixel domain steganography applied on HEVC video is targeted for the first time. Also, its the first paper that employs accordion unfolding transformation, which merges temporal and spatial correlation, in pixel domain video steganalysis. With help of the transformation, temporal correlation is incorporated into the system. Its demonstrated for three different feature sets that integrating temporal dependency substantially increased the detection accuracy.
Resumo:
We propose a spatio-temporal rich model of motion vector planes as a part of a full steganalytic system against motion vector based steganography. Superior detection accuracy of the rich model over the previous methods has been lately demonstrated for digital images in both spatial and DCT domain. It has not been heretofore used for detection of motion vector steganography. We also introduced a transformation so as to extend the feature set with temporal residuals. We carried out the tests along with most recent motion vector steganalysis and steganography methods. Test results show that the proposed model delivers an outstanding performance compared to the previous methods.
Resumo:
A rich model based motion vector steganalysis benefiting from both temporal and spatial correlations of motion vectors is proposed in this work. The proposed steganalysis method has a substantially superior detection accuracy than the previous methods, even the targeted ones. The improvement in detection accuracy lies in several novel approaches introduced in this work. Firstly, it is shown that there is a strong correlation, not only spatially but also temporally, among neighbouring motion vectors for longer distances. Therefore, temporal motion vector dependency along side the spatial dependency is utilized for rigorous motion vector steganalysis. Secondly, unlike the filters previously used, which were heuristically designed against a specific motion vector steganography, a diverse set of many filters which can capture aberrations introduced by various motion vector steganography methods is used. The variety and also the number of the filter kernels are substantially more than that of used in previous ones. Besides that, filters up to fifth order are employed whereas the previous methods use at most second order filters. As a result of these, the proposed system captures various decorrelations in a wide spatio-temporal range and provides a better cover model. The proposed method is tested against the most prominent motion vector steganalysis and steganography methods. To the best knowledge of the authors, the experiments section has the most comprehensive tests in motion vector steganalysis field including five stego and seven steganalysis methods. Test results show that the proposed method yields around 20% detection accuracy increase in low payloads and 5% in higher payloads.
Resumo:
In this work, we propose a multi agent system for digital image steganalysis, based on the poliginic bees model. Such approach aims to solve the problem of automatic steganalysis for digital media, with a case study on digital images. The system architecture was designed not only to detect if a file is suspicious of covering a hidden message, as well to extract the hidden message or information regarding it. Several experiments were performed whose results confirm a substantial enhancement (from 67% to 82% success rate) by using the multi-agent approach, fact not observed in traditional systems. An ongoing application using the technique is the detection of anomalies in digital data produced by sensors that capture brain emissions in little animals. The detection of such anomalies can be used to prove theories and evidences of imagery completion during sleep provided by the brain in visual cortex areas
Resumo:
En la actualidad, los avances en la ciencia de la esteganografía lingüística en español abren nuevas líneas de investigación en su aplicación a la protección / privacidad de las comunicaciones digitales y en el marcado de textos. El presente artículo profundiza en el interés del uso de la reordenación de complementos del verbo en textos existentes en lengua española con utilidad en esteganografía lingüística y en el marcado digital de textos (marca de agua). Abstract. At present the advances in the science of linguistic steganography in Spanish open new lines of research in its application for the protection / privacy of digital communications and in the marking of texts. This article studies the possible interest of reordering complements of the verb in existing texts in Spanish language with regard to its usefulness in linguistic steganography and in digital marking of texts (watermarks).
Resumo:
The objective of this paper is to develop a method to hide information inside a binary image. An algorithm to embed data in scanned text or figures is proposed, based on the detection of suitable pixels, which verify some conditions in order to be not detected. In broad terms, the algorithm locates those pixels placed at the contours of the figures or in those areas where some scattering of the two colors can be found. The hidden information is independent from the values of the pixels where this information is embedded. Notice that, depending on the sequence of bits to be hidden, around half of the used pixels to keep bits of data will not be modified. The other basic characteristic of the proposed scheme is that it is necessary to take into consideration the bits that are modified, in order to perform the recovering process of the information, which consists on recovering the sequence of bits placed in the proper positions. An application to banking sector is proposed for hidding some information in signatures.
Resumo:
The objective of this paper is to present a system to communicate hidden information among different users by means of images. The tasks that the system is able to carry on can be divided in two different groups of utilities, implemented in java. The first group of utilities are related with the possibility to hide information in color images, using a steganographic function based on the least significant bit (LSB) methods. The second group of utilities allows us to communicate with other users with the aim to send or receive images, where some information have been previously embedded. Thus, this is the most significant characteristic of the implementation, we have built an environment where we join the email capabilities to send and receive text and images as attached files, with the main objective of hiding information.
Resumo:
The aim was to develop an archive containing detailed description of church bells. As an object of cultural heritage the bell has general properties such as geometric dimensions, weight, sound of each of the bells, the pitch of the tone as well as acoustical diagrams obtained using contemporary equipment. The audio, photo and video archive is developed by using advanced technologies for analysis, reservation and data protection.
Resumo:
Our modular approach to data hiding is an innovative concept in the data hiding research field. It enables the creation of modular digital watermarking methods that have extendable features and are designed for use in web applications. The methods consist of two types of modules – a basic module and an application-specific module. The basic module mainly provides features which are connected with the specific image format. As JPEG is a preferred image format on the Internet, we have put a focus on the achievement of a robust and error-free embedding and retrieval of the embedded data in JPEG images. The application-specific modules are adaptable to user requirements in the concrete web application. The experimental results of the modular data watermarking are very promising. They indicate excellent image quality, satisfactory size of the embedded data and perfect robustness against JPEG transformations with prespecified compression ratios. ACM Computing Classification System (1998): C.2.0.