680 resultados para Steel strip cleaning
Resumo:
Corrosion rates of 1020 steel in 2.75 M NaOH solution at a temperature of 160 degrees C and velocities of 0.32 and 2.5 m/s were studied. The focus was on the effect of the acid cleaning which was performed by using strong, inhibited sulphuric acid in between the exposures to caustic. In situ electrochemical methods were used to measure the corrosion rate such as the potentiodynamic sweep and the polarization resistance method. Also used were the weight-loss method and scanning electron microscopy (SEM). Eight electrodes/coupons were used to monitor the metal loss rate, four were placed at the low velocity section, while the other four were placed in the high velocity section of a high temperature flow. The first three coupons in each section were placed within the disturbed flow region, while the fourth was placed in a fully developed flow region. During the exposure of mild steel to the inhibited acid, following the first caustic period, the corrosion rate increased significantly to between 3 and 10mm/y with a few electrodes experiencing as high as 50 mm/y. The second caustic period following the acidic period typically started with very high corrosion rates (20-80 mm/y). The length of this corrosion period was typically 2-3 h with a few exceptions when the high corrosion period lasted 7-10 h. Following the very high corrosion rates experienced at the beginning of the second caustic period, the corrosion rates were reduced sharply (as the corrosion potential increased) to nearly the same levels as those observed during the passive part of the first caustic period. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The biofilm formation of Enterococcus faecalis and Enterococcus faecium isolated from the processing of ricotta on stainless steel coupons was evaluated, and the effect of cleaning and sanitization procedures in the control of these biofilms was determined. The formation of biofilms was observed while varying the incubation temperature (7, 25 and 39°C) and time (0, 1, 2, 4, 6 and 8days). At 7°C, the counts of E. faecalis and E. faecium were below 2log10CFU/cm(2). For the temperatures of 25 and 39°C, after 1day, the counts of E. faecalis and E. faecium were 5.75 and 6.07log10CFU/cm(2), respectively, which is characteristic of biofilm formation. The tested sanitation procedures a) acid-anionic tensioactive cleaning, b) anionic tensioactive cleaning+sanitizer and c) acid-anionic tensioactive cleaning+sanitizer were effective in removing the biofilms, reducing the counts to levels below 0.4log10CFU/cm(2). The sanitizer biguanide was the least effective, and peracetic acid was the most effective. These studies revealed the ability of enterococci to form biofilms and the importance of the cleaning step and the type of sanitizer used in sanitation processes for the effective removal of biofilms.
Quality of martensitic stainless steel type AISI-420 utilized in the manufacture surgical implements
Resumo:
Until now the martensitic stainless steel type AISI-420 is widely used in the manufacture of surgical implements. These implements present premature corrosion problems identified after cleaning, sterilization and cutting edge loss and/or rupture during the surgical processes.. This study evaluates the steel as to the chemical composition, hardness, microstructure and pitting corrosion resistance in a solution of enzyme detergent diluted in water by anodic cyclic polarization. This mixture is used in the cleaning of surgical implements that are submerged in this solution for 2 h before cleaning and sterilization. The results show steels with martensite microstructures in the ferrite phase, together with impurities. These presented low pitting potential values in compariston to steels with a fully martensitic microstructure.
Resumo:
A high nitrogen austenitic stainless steel (0.9wt% N) and an ordinary 304 austenitic stainless steel were submitted to cavitation-erosion tests in a vibratory apparatus operating at a frequency of 20 kHz. The high nitrogen stainless steel was obtained by high temperature gas nitriding a 1-mm thick strip of an UNS 31803 duplex stainless steel. The 304 austenitic stainless steel was used for comparison purposes. The specimens were characterized by scanning electron microscopy and Electron Back Scatter Diffraction. The surface of the cavitation damaged specimens was analyzed trying to find out the regions where cavitation damage occurred preferentially. The distribution of sites where cavitation inception occurred was extremely heterogeneous, concentrating basically at (i) slip lines inside some grains and (ii) Sigma-3 coincidence site lattice (CSL) boundaries (twin boundaries). Furthermore, it was observed that the CE damage spread faster inside those grains which were more susceptible to damage incubation. The damage heterogeneity was addressed to plasticity anisotropy. Grains in which the crystallographic orientation leads to high resolved shear stress show intense damage at slip lines. Grain boundaries between grains with large differences in resolved shear stress where also intensely damaged. The relationship between crystallite orientation distributions, plasticity anisotropy and CE damage mechanisms are discussed. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The optimal design of cold-formed steel columns is addressed in this paper, with two objectives: maximize the local-global buckling strength and maximize the distortional buckling strength. The design variables of the problem are the angles of orientation of cross-section wall elements the thickness and width of the steel sheet that forms the cross-section are fixed. The elastic local, distortional and global buckling loads are determined using Finite Strip Method (CUFSM) and the strength of cold-formed steel columns (with given length) is calculated using the Direct Strength Method (DSM). The bi-objective optimization problem is solved using the Direct MultiSearch (DMS) method, which does not use any derivatives of the objective functions. Trade-off Pareto optimal fronts are obtained separately for symmetric and anti-symmetric cross-section shapes. The results are analyzed and further discussed, and some interesting conclusions about the individual strengths (local-global and distortional) are found.
Resumo:
A pilot study was conducted on the premature failures of neoprene strip seals in expansion joints in Iowa bridges. In a relatively large number of bridges, strip seals have pulled out of the steel extrusions or otherwise failed well before the expected life span of the seal. The most serious consequence of a strip-seal failure is damage to the bridge substructure due to salt, water, and debris interacting with the substructure. A literature review was performed. Manufacturers’ specifications and recommendations, practices in the states bordering Iowa, and Iowa DOT design and installation guidelines were reviewed. Discussions were held with bridge contractors and the installation of a strip seal system was observed. Iowa DOT bridge databases were analyzed. A national survey was conducted on the use and performance of strip seals. With guidance from the Iowa DOT, twelve in-service bridges with strip-seal expansion joints were selected for detailed investigation. Effective bridge temperatures and corresponding expansion-joint openings were measured, DOT inspection reports were reviewed, and likely cause(s) of premature failures of strip seals were proposed. All of the seals used in the twelve bridges that had the most serious failures were in concrete girder bridges. Experimental results show that for a majority of these serious failures, the joint opening at 0° F predicted by the Iowa DOT design equations, the joint opening at 0° F extrapolated from the experimental data, or both, are larger than the movement rating of the strip seal specified on the bridge plans. Other likely causes of premature failures of seals in the twelve bridges include debris and ice in the seal cavity, a large skew and the corresponding decrease in the movement rating of the seal, improper installation, and improper setting of the initial gap.
Resumo:
Soil consolidation and erosion caused by roadway runoff have exposed the upper portions of steel piles at the abutments of numerous bridges, leaving them susceptible to accelerated corrosion rates due to the abundance of moisture, oxygen, and chlorides at these locations. This problem is compounded by the relative inaccessibility of abutment piles for close-up inspection and repair. The objective of this study was to provide bridge owners with recommendations for effective methods of addressing corrosion of steel abutment piles in existing and future bridges A review of available literature on the performance and protection of steel piles exposed to a variety of environments was performed. Eight potential coating systems for use in protecting existing and/or new piles were selected and subjected to accelerated corrosion conditions in the laboratory. Two surface preparation methods were evaluated in the field and three coating systems were installed on three piles at an existing bridge where abutment piles had been exposed by erosion. In addition, a passive cathodic protection (CP) system using sacrificial zinc anodes was tested in the laboratory. Several trial flowable mortar mixes were evaluated for use in conjunction with the CP system. For existing abutment piles, application of a protective coating system is a promising method of mitigating corrosion. Based on its excellent performance in accelerated corrosion conditions in the laboratory on steel test specimens with SSPC-SP3, -SP6, and -SP10 surface preparations, glass flake polyester is recommended for use on existing piles. An alternative is epoxy over organic zinc rich primer. Surface preparation of existing piles should include abrasive blast cleaning to SSPC-SP6. Although additional field testing is needed, based on the results of the laboratory testing, a passive CP system could provide an effective means of protecting piles in existing bridges when combined with a pumped mortar used to fill voids between the abutment footing and soil. The addition of a corrosion inhibitor to the mortar appears to be beneficial. For new construction, shop application of thermally sprayed aluminum or glass flake polyester to the upper portion of the piles is recommended.
Resumo:
Bridge expansion joints, if not properly designed, constructed, and maintained, often lead to the deterioration of critical substructure elements. Strip seal expansion joints consisting of a steel extrusion and neoprene gland are one type of expansion joint and are commonly used by the Iowa Department of Transportation (DOT). Strip seal expansion joints are susceptible to tears and pull outs that allow water, chlorides, and debris to infiltrate the joint, and subsequently the bearings below. One area of the strip seal that is particularly problematic is where it terminates at the interface between the deck and the barrier rail. The Iowa DOT has noted that the initial construction quality of the current strip seal termination detail is not satisfactory, nor ideal, and a need exists for re-evaluation and possibly re-design of this detail. Desirable qualities of a strip seal termination detail provide a seal that is simple and fast to construct, facilitate quick gland removal and installation, and provide a reliable, durable barrier to prevent chloride-contaminated water from reaching the substructure. To meet the objectives of this research project, several strip seal termination details were evaluated in the laboratory. Alternate termination details may not only function better than the current Iowa DOT standard, but are also less complicated to construct, facilitating better quality control. However, uncertainties still exist regarding the long-term effects of using straight-through details, with or without the dogleg, that could not be answered in the laboratory in the short time frame of the research project.
The adherence of Pseudomonas fluorescens to marble, granite, synthetic polymers, and stainless steel
Resumo:
The adherence of Pseudomonas fluorescens cells to nine food-processing contact surfaces was evaluated using the plate-count method. The surfaces include marble, granite, stainless steel, polyvinyl chloride, polyurethane, and silicone-coated cloth, which have been used only in a few studies concerning bacterial adherence. The number of cells adhered to the surfaces increased with contact time reaching 5.0-6.1 log CDM.cm-2 after 10 hours, which can be considered a well established adherence process. The number of adhered cells doubled in 29.5 minutes and 23.5 minutes on stainless steel and thin polyvinyl chloride-coated cloth, respectively. For the other surfaces, this value was 9.8 minutes on average. Marble, granite, thick polyvinyl-coated cloth, double-faced rugous polyurethane, and silicone-coated cloth were not different (p < 0.05) in their ability to adhere cells (CFU/cm²) after 2 and 10 hours. The surfaces that had higher percentage of similarity in the adhesion level and higher log CFU/cm² of adhered cells were double-faced rugous polyurethane, silicone-coated cloth, and granite. The surfaces showed very different microtopography characteristics when viewed using scanning electron microscopy. This experiment showed the importance of using appropriate materials for food contact during processing, which will affect the cleaning and sanitation procedures.
Resumo:
The effectiveness of cleaning and sanitizing procedures in controlling Staphylococcus aureus, Salmonella Enteritidis, and Pseudomonasfluorescens adhered to granite and stainless steel was evaluated. There was no significant difference (p > 0.05) in the adherence of pure cultures of these microorganisms to stainless steel. The numbers of P. fluorescens and S. Enteritidis adhered to granite were greater (p < 0.05) than the numbers of S. aureus. Additionally, the adherence of P. fluorescens was similar to the adherence of S. Enteritidis on granite surface. In a mixed culture with P. fluorescens, S aureus adhered less (p < 0.05) to stainless steel surfaces (1.31 log CFU.cm-2) than when in a pure culture (6.10 log CFU.cm-2). These results suggest that P. fluorescens inhibited the adherence of S. aureus. However, this inhibition was not observed in the adherence process for granite. There was a significant difference (p < 0.05) between the number of adhered cells before and after pre-washing for S. aureus on stainless steel and granite surfaces, and after washing with detergent for all microorganisms and surfaces. The efficiency of the cleaning plus sanitizing procedures was not significantly different (p > 0.05) between the surfaces. However, a significant difference was observed (p < 0.05) between the sanitizer solutions. Sodium hypochlorite and peracetic acid were more bactericidal (p < 0.05) than a quaternary ammonium compound. With regard to microorganisms, S. aureus was the least resistant to the sanitizers. These results show the importance of good cleaning and sanitization procedures to prevent bacterial adherence and biofilm formation.
Resumo:
Purpose: The aim of this study was to evaluate the effect of three denture hygiene methods against different microbial biofilms formed on acrylic resin specimens. Materials and methods: The set (sterile stainless steel basket and specimens) was contaminated (37 degrees C for 48 hours) by a microbial inoculum with 106 colony-forming units (CFU)/ml (standard strains: Staphylococcus aureus, Streptococcus mutans, Escherichia coli, Candida albicans, Pseudomonas aeruginosa, and Enterococcus faecalis; field strains: S. mutans, C. albicans, C. glabrata, and C. tropicalis). After inoculation, specimens were cleansed by the following methods: (1) chemical: immersion in an alkaline peroxide solution (Bonyplus tablets) for 5 minutes; (2) mechanical: brushing with a dentifrice for removable prostheses (Dentu Creme) for 20 seconds; and (3) a combination of chemical and mechanical methods. Specimens were applied onto a Petri plate with appropriate culture medium for 10 minutes. Afterward, the specimens were removed and the plates incubated at 37 degrees C for 48 hours. Results: Chemical, mechanical, and combination methods showed no significant difference in the reduction of CFU for S. aureus, S. mutans (ATCC and field strain), and P. aeruginosa. Mechanical and combination methods were similar and more effective than the chemical method for E. faecalis, C. albicans (ATCC and field strain), and C. glabrata. The combination method was better than the chemical method for E. coli and C. tropicalis, and the mechanical method showed intermediate results. Conclusion: The three denture hygiene methods showed different effects depending on the type of microbial biofilms formed on acrylic base resin specimens.
Resumo:
Hot rolling process is heat input process. The heat energy in hot rolled steel coils can be utilized. At SSAB Strip Product Borlänge when the hot rolled steel coils came out of the hot rolling mill they are at the temperature range of 500°C to 800°C. Heat energy contained by the one hot rolled steel coil is about 1981Kwh whereas the total heat energy for the year 2008 is 230 GWh/year.The potential of heat is too much but the heat dissipation rate is too slow. Different factors on which heat dissipation rate depends are discussed.Three suggestions are proposed to collect the waste heat from hot rolled steel coils.The 2nd proposal in which water basin is suggested would help not only to collect the waste heat but to decrease in the cooling time.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The objectives of the present study were to evaluate the spread of Salmonella Enteritidis to different cutting boards (wood, triclosan-treated plastic, glass, and stainless steel) from contaminated poultry skin (5 log CFU/g) and then to tomatoes and to analyze the effect of different protocols used to clean these surfaces to control contamination. The following procedures were simulated: (1) no cleaning after handling contaminated poultry skin; (2) rinsing in running water; (3) cleaning with dish soap and mechanical scrubbing; and (4) cleaning with dish soap and mechanical scrubbing, followed by disinfection with hypochlorite. The pathogen was recovered from all surfaces following procedure 1, with counts ranging from 1.90 to 2.80 log, as well as from the tomatoes handled on it. Reduced numbers of S. Enteritidis were recovered using the other procedures, both from the surfaces and from the tomatoes. Counts were undetectable after procedure 4. From all surfaces evaluated, wood was the most difficult to clean, and stainless steel was the easiest. The use of hypochlorite as a disinfecting agent helped to reduce cross-contamination. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
There are many industries that use highly technological solutions to improve quality in all of their products. The steel industry is one example. Several automatic surface-inspection systems are used in the steel industry to identify various types of defects and to help operators decide whether to accept, reroute, or downgrade the material, subject to the assessment process. This paper focuses on promoting a strategy that considers all defects in an integrated fashion. It does this by managing the uncertainty about the exact position of a defect due to different process conditions by means of Gaussian additive influence functions. The relevance of the approach is in making possible consistency and reliability between surface inspection systems. The results obtained are an increase in confidence in the automatic inspection system and an ability to introduce improved prediction and advanced routing models. The prediction is provided to technical operators to help them in their decision-making process. It shows the increase in improvement gained by reducing the 40 % of coils that are downgraded at the hot strip mill because of specific defects. In addition, this technology facilitates an increase of 50 % in the accuracy of the estimate of defect survival after the cleaning facility in comparison to the former approach. The proposed technology is implemented by means of software-based, multi-agent solutions. It makes possible the independent treatment of information, presentation, quality analysis, and other relevant functions.