925 resultados para Statistical packages
Resumo:
Generalized linear mixed models are flexible tools for modeling non-normal data and are useful for accommodating overdispersion in Poisson regression models with random effects. Their main difficulty resides in the parameter estimation because there is no analytic solution for the maximization of the marginal likelihood. Many methods have been proposed for this purpose and many of them are implemented in software packages. The purpose of this study is to compare the performance of three different statistical principles - marginal likelihood, extended likelihood, Bayesian analysis-via simulation studies. Real data on contact wrestling are used for illustration.
Resumo:
We present the cacher and CodeDepends packages for R, which provide tools for (1) caching and analyzing the code for statistical analyses and (2) distributing these analyses to others in an efficient manner over the web. The cacher package takes objects created by evaluating R expressions and stores them in key-value databases. These databases of cached objects can subsequently be assembled into “cache packages” for distribution over the web. The cacher package also provides tools to help readers examine the data and code in a statistical analysis and reproduce, modify, or improve upon the results. In addition, readers can easily conduct alternate analyses of the data. The CodeDepends package provides complementary tools for analyzing and visualizing the code for a statistical analysis and this functionality has been integrated into the cacher package. In this chapter we describe the cacher and CodeDepends packages and provide examples of how they can be used for reproducible research.
Resumo:
-adolist- creates, installs and uninstalls lists of user ado packages.
Resumo:
Background The problem of silent multiple comparisons is one of the most difficult statistical problems faced by scientists. It is a particular problem for investigating a one-off cancer cluster reported to a health department because any one of hundreds, or possibly thousands, of neighbourhoods, schools, or workplaces could have reported a cluster, which could have been for any one of several types of cancer or any one of several time periods. Methods This paper contrasts the frequentist approach with a Bayesian approach for dealing with silent multiple comparisons in the context of a one-off cluster reported to a health department. Two published cluster investigations were re-analysed using the Dunn-Sidak method to adjust frequentist p-values and confidence intervals for silent multiple comparisons. Bayesian methods were based on the Gamma distribution. Results Bayesian analysis with non-informative priors produced results similar to the frequentist analysis, and suggested that both clusters represented a statistical excess. In the frequentist framework, the statistical significance of both clusters was extremely sensitive to the number of silent multiple comparisons, which can only ever be a subjective "guesstimate". The Bayesian approach is also subjective: whether there is an apparent statistical excess depends on the specified prior. Conclusion In cluster investigations, the frequentist approach is just as subjective as the Bayesian approach, but the Bayesian approach is less ambitious in that it treats the analysis as a synthesis of data and personal judgements (possibly poor ones), rather than objective reality. Bayesian analysis is (arguably) a useful tool to support complicated decision-making, because it makes the uncertainty associated with silent multiple comparisons explicit.