910 resultados para Statistic process control
Resumo:
Over the last two or three years, the increasing costs of energy and worsening market conditions have focussed even greater attention within paper mills than before, on considering ways to improve efficiency and reduce the energy used in paper making. Arising from a multivariable understanding of paper machine operation, Advanced Process Control (APC) technology enables paper machine behaviour to be controlled in a more coherent way, using all the variables available for control. Furthermore, with the machine under better regulation and with more variables used in control, there is the opportunity to optimise machine operation, usually providing very striking multi-objective performance improvement benefits of a number of kinds. Traditional three term control technology does not offer this capability. The paper presents results from several different paper machine projects we have undertaken around the world. These projects have been aimed at improving machine stability, optimising chemicals usage and reducing energy use. On a brown paperboard machine in Australasia, APC has reduced specific steam usage by 10%, averaged across the grades; the controller has also provided a significant capacity to increase production. On a North American newsprint machine, the APC system has reduced steam usage by more than 10%, and it provides better control of colour and much improved wet end stability. The paper also outlines early results from two other performance improvement projects, each incorporating a different approach to reducing the energy used in paper making. The first of these two projects is focussed on optimising sheet drainage, aiming to present the dryer with a sheet having higher solids content than before. The second project aims to reduce specific steam usage by optimising the operation of the dryer hood.
Resumo:
Two biosensors for fermentation process control have been introduced, which were developed in our lab recently. One is an enzyme electrode-based on-line monitoring system for glutamate fermentation process control and the other is an H+-ISFET-based ENFET for penicillin G fermentation process control.
Resumo:
Two biosensors for fermentation process control have been introduced, which were developed in our lab recently. One is an enzyme electrode-based on-line monitoring system for glutamate fermentation process control and the other is an H+-ISFET-based ENFET for penicillin G fermentation process control.
Resumo:
The work comprises a new theoretical development applied to aid decision making in an increasingly important commercial sector. Agile supply, where small volumes of high margin, short life cycle innovative products are offered, is increasingly carried out through a complex global supply chain network. We outline an equilibrium solution in such a supply chain network, which works through limited cooperation and coordination along edges (links) in the network. The links constitute the stochastic modelling entities rather than the nodes of the network. We utilise newly developed phase plane analysis to identify, model and predict characteristic behaviour in supply chain networks. The phase plane charts profile the flow of inventory and identify out of control conditions. They maintain quality within the network, as well as intelligently track the way the network evolves in conditions of changing variability. The methodology is essentially distribution free, relying as it does on the study of forecasting errors, and can be used to examine contractual details as well as strategic and game theoretical concepts between decision-making components (agents) of a network. We illustrate with typical data drawn from supply chain agile fashion products.
Resumo:
Objective: To develop sedation, pain, and agitation quality measures using process control methodology and evaluate their properties in clinical practice. Design: A Sedation Quality Assessment Tool was developed and validated to capture data for 12-hour periods of nursing care. Domains included pain/discomfort and sedation-agitation behaviors; sedative, analgesic, and neuromuscular blocking drug administration; ventilation status; and conditions potentially justifying deep sedation. Predefined sedation-related adverse events were recorded daily. Using an iterative process, algorithms were developed to describe the proportion of care periods with poor limb relaxation, poor ventilator synchronization, unnecessary deep sedation, agitation, and an overall optimum sedation metric. Proportion charts described processes over time (2 monthly intervals) for each ICU. The numbers of patients treated between sedation-related adverse events were described with G charts. Automated algorithms generated charts for 12 months of sequential data. Mean values for each process were calculated, and variation within and between ICUs explored qualitatively. Setting: Eight Scottish ICUs over a 12-month period. Patients: Mechanically ventilated patients. Interventions: None. Measurements and Main Results: The Sedation Quality Assessment Tool agitation-sedation domains correlated with the Richmond Sedation Agitation Scale score (Spearman [rho] = 0.75) and were reliable in clinician-clinician (weighted kappa; [kappa] = 0.66) and clinician-researcher ([kappa] = 0.82) comparisons. The limb movement domain had fair correlation with Behavioral Pain Scale ([rho] = 0.24) and was reliable in clinician-clinician ([kappa] = 0.58) and clinician-researcher ([kappa] = 0.45) comparisons. Ventilator synchronization correlated with Behavioral Pain Scale ([rho] = 0.54), and reliability in clinician-clinician ([kappa] = 0.29) and clinician-researcher ([kappa] = 0.42) comparisons was fair-moderate. Eight hundred twenty-five patients were enrolled (range, 59-235 across ICUs), providing 12,385 care periods for evaluation (range 655-3,481 across ICUs). The mean proportion of care periods with each quality metric varied between ICUs: excessive sedation 12-38%; agitation 4-17%; poor relaxation 13-21%; poor ventilator synchronization 8-17%; and overall optimum sedation 45-70%. Mean adverse event intervals ranged from 1.5 to 10.3 patients treated. The quality measures appeared relatively stable during the observation period. Conclusions: Process control methodology can be used to simultaneously monitor multiple aspects of pain-sedation-agitation management within ICUs. Variation within and between ICUs could be used as triggers to explore practice variation, improve quality, and monitor this over time
Resumo:
In this paper, a knowledge-based approach is proposed for the management of temporal information in process control. A common-sense theory of temporal constraints over processes/events, allowing relative temporal knowledge, is employed here as the temporal basis for the system. This theory supports duration reasoning and consistency checking, and accepts relative temporal knowledge which is in a form normally used by human operators. An architecture for process control is proposed which centres on an historical database consisting of events and processes, together with the qualitative temporal relationships between their occurrences. The dynamics of the system is expressed by means of three types of rule: database updating rules, process control rules, and data deletion rules. An example is provided in the form of a life scheduler, to illustrate the database and the rule sets. The example demonstrates the transitions of the database over time, and identifies the procedure in terms of a state transition model for the application. The dividing instant problem for logical inference is discussed with reference to this process control example, and it is shown how the temporal theory employed can be used to deal with the problem.
Resumo:
A general system is presented in this paper which supports the expression of relative temporal knowledge in process control and management. This system allows knowledge of Allen's temporal relations over time elements, which may be both intervals and points. The objectives and characteristics of two major temporal attributes, i.e. ‘transaction time’ and ‘valid time’, are described. A graphical representation for the temporal network is presented, and inference over the network may be made by means of a consistency checker in terms of the graphical representation. An illustrative example of the system as applied to process control and management is provided.
Resumo:
Reply to author's reply
Resumo:
A new algorithm for training of nonlinear optimal neuro-controllers (in the form of the model-free, action-dependent, adaptive critic paradigm). Overcomes problems with existing stochastic backpropagation training: need for data storage, parameter shadowing and poor convergence, offering significant benefits for online applications.