977 resultados para State feedback
Resumo:
This paper employs a state space system description to provide a pole placement scheme via state feedback. It is shown that when a recursive least squares estimation scheme is used, the feedback employed can be expressed simply in terms of the estimated system parameters. To complement the state feedback approach, a method employing both state feedback and linear output feedback is discussed. Both methods arc then compared with the previous output polynomial type feedback schemes.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The aim of this paper is to provide an efficient control design technique for discrete-time positive periodic systems. In particular, stability, positivity and periodic invariance of such systems are studied. Moreover, the concept of periodic invariance with respect to a collection of boxes is introduced and investigated with connection to stability. It is shown how such concept can be used for deriving a stabilizing state-feedback control that maintains the positivity of the closed-loop system and respects states and control signals constraints. In addition, all the proposed results can be efficiently solved in terms of linear programming.
Resumo:
This thesis work has been motivated by an internal benchmark dealing with the output regulation problem of a nonlinear non-minimum phase system in the case of full-state feedback. The system under consideration structurally suffers from finite escape time, and this condition makes the output regulation problem very hard even for very simple steady-state evolution or exosystem dynamics, such as a simple integrator. This situation leads to studying the approaches developed for controlling Non-minimum phase systems and how they affect feedback performances. Despite a lot of frequency domain results, only a few works have been proposed for describing the performance limitations in a state space system representation. In particular, in our opinion, the most relevant research thread exploits the so-called Inner-Outer Decomposition. Such decomposition allows splitting the Non-minimum phase system under consideration into a cascade of two subsystems: a minimum phase system (the outer) that contains all poles of the original system and an all-pass Non-minimum phase system (the inner) that contains all the unavoidable pathologies of the unstable zero dynamics. Such a cascade decomposition was inspiring to start working on functional observers for linear and nonlinear systems. In particular, the idea of a functional observer is to exploit only the measured signals from the system to asymptotically reconstruct a certain function of the system states, without necessarily reconstructing the whole state vector. The feature of asymptotically reconstructing a certain state functional plays an important role in the design of a feedback controller able to stabilize the Non-minimum phase system.
Resumo:
Tuotantotehokkuus näyttelee yhä suurempaa roolia teollisuudessa, minkä vuoksi myös pakkauslinjastoille joudutaan asettamaan suuria vaatimuksia. Usein leikkaus- ja kappaleensiirtosovelluksissa käytetään lineaarisia ruuvikäyttöjä, jotka voitaisiin tietyin edellytyksin korvata halvemmilla ja osittain suorituskykyisimmillä hammashihnavetoisilla johteilla. Yleensä paikkasäädetty työsolu muodostuu kahden tai kolmen eri koordinaatistoakselin suuntaan asennetuista johteista. Tällaisen työsolun paikoitustarkkuuteen vaikuttavat muun muassa käytetty säätörakenne, moottorisäätöketjun viiveet, sekä laitteiston eri epälineaarisuudet, kuten kitka. Tässä työssä esitetään lineaarisen hammashihnaservokäytön dynaamista käytöstä kuvaava matemaattinen malli ja laaditaan mallin pohjalta laitteen simulointimalli. Mallin toimivuus varmistetaan käytännön identifiointitesteillä. Lisäksi työssä tutkitaan, kuinka hyvään suorituskykyyn lineaarinen hammashihnaservokäyttö kykenee, jos teollisuudessa paikoitussäätörakenteena tyypillisesti käytetty kaskadirakenne tai PID-rakenne korvataan kehittyneemmällä mallipohjaisella tilasäädinrakenteella. Säädön toimintaa arvioidaan simulointien ja koelaitteistolla suoritettavien mittausten perusteella.
Resumo:
This paper studies the effect of time delay on the active non-linear control of dynamically loaded flexible structures. The behavior of non-linear systems under state feedback control, considering a fixed time delay for the control force, is investigated. A control method based on non-linear optimal control, using a tensorial formulation and state feedback control is used. The state equations and the control forces are expressed in polynomial form and a performance index, quadratic in both state vector and control forces, is used. General polynomial representations of the non-linear control law are obtained and implemented for control algorithms up to the fifth order. This methodology is applied to systems with quadratic and cubic non-linearities. Strongly non-linear systems are tested and the effectiveness of the control system including a delay for the application of control forces is discussed. Numerical results indicate that the adopted control algorithm can be efficient for non-linear systems, chiefly in the presence of strong non-linearities but increasing time delay reduces the efficiency of the control system. Numerical results emphasize the importance of considering time delay in the project of active structural control systems.
Resumo:
The results from applying a sensor fusion process to an adaptive controller used to balance all inverted pendulum axe presented. The goal of the sensor fusion process was to replace some of the four mechanical measurements, which are known to be sufficient inputs for a linear state feedback controller to balance the system, with optic flow variables. Results from research into the psychology of the sense of balance in humans were the motivation for the investigation of this new type of controller input. The simulated model of the inverted pendulum and the virtual reality environments used to provide the optical input are described. The successful introduction of optical information is found to require the preservation of at least two of the traditional input types and entail increased training till-le for the adaptive controller and reduced performance (measured as the time the pendulum remains upright)
Resumo:
A dynamic recurrent neural network (DRNN) that can be viewed as a generalisation of the Hopfield neural network is proposed to identify and control a class of control affine systems. In this approach, the identified network is used in the context of the differential geometric control to synthesise a state feedback that cancels the nonlinear terms of the plant yielding a linear plant which can then be controlled using a standard PID controller.
Resumo:
The main limitation of linearization theory that prevents its application in practical problems is the need for an exact knowledge of the plant. This requirement is eliminated and it is shown that a multilayer network can synthesise the state feedback coefficients that linearize a nonlinear control affine plant. The stability of the linearizing closed loop can be guaranteed if the autonomous plant is asymptotically stable and the state feedback is bounded.
Resumo:
A robust pole assignment by linear state feedback is achieved in state-space representation by selecting a feedback which minimises the conditioning of the assigned eigenvalues of the closed-loop system. It is shown here that when this conditioning is minimised, a lower bound on the stability margin in the frequency domain is maximised.
Resumo:
The robustness of state feedback solutions to the problem of partial pole placement obtained by a new projection procedure is examined. The projection procedure gives a reduced-order pole assignment problem. It is shown that the sensitivities of the assigned poles in the complete closed-loop system are bounded in terms of the sensitivities of the assigned reduced-order poles, and the sensitivities of the unaltered poles are bounded in terms of the sensitivities of the corresponding open-loop poles. If the assigned poles are well-separated from the unaltered poles, these bounds are expected to be tight. The projection procedure is described in [3], and techniques for finding robust (or insensitive) solutions to the reduced-order problem are given in [1], [2].
Resumo:
This work deals with an on-line control strategy based on Robust Model Predictive Control (RMPC) technique applied in a real coupled tanks system. This process consists of two coupled tanks and a pump to feed the liquid to the system. The control objective (regulator problem) is to keep the tanks levels in the considered operation point even in the presence of disturbance. The RMPC is a technique that allows explicit incorporation of the plant uncertainty in the problem formulation. The goal is to design, at each time step, a state-feedback control law that minimizes a 'worst-case' infinite horizon objective function, subject to constraint in the control. The existence of a feedback control law satisfying the input constraints is reduced to a convex optimization over linear matrix inequalities (LMIs) problem. It is shown in this work that for the plant uncertainty described by the polytope, the feasible receding horizon state feedback control design is robustly stabilizing. The software implementation of the RMPC is made using Scilab, and its communication with Coupled Tanks Systems is done through the OLE for Process Control (OPC) industrial protocol
Resumo:
There are two main approaches for using in adaptive controllers. One is the so-called model reference adaptive control (MRAC), and the other is the so-called adaptive pole placement control (APPC). In MRAC, a reference model is chosen to generate the desired trajectory that the plant output has to follow, and it can require cancellation of the plant zeros. Due to its flexibility in choosing the controller design methodology (state feedback, compensator design, linear quadratic, etc.) and the adaptive law (least squares, gradient, etc.), the APPC is the most general type of adaptive control. Traditionally, it has been developed in an indirect approach and, as an advantage, it may be applied to non-minimum phase plants, because do not involve plant zero-pole cancellations. The integration to variable structure systems allows to aggregate fast transient and robustness to parametric uncertainties and disturbances, as well. In this work, a variable structure adaptive pole placement control (VS-APPC) is proposed. Therefore, new switching laws are proposed, instead of using the traditional integral adaptive laws. Additionally, simulation results for an unstable first order system and simulation and practical results for a three-phase induction motor are shown
Resumo:
A Lyapunov-based stabilizing control design method for uncertain nonlinear dynamical systems using fuzzy models is proposed. The controller is constructed using a design model of the dynamical process to be controlled. The design model is obtained from the truth model using a fuzzy modeling approach. The truth model represents a detailed description of the process dynamics. The truth model is used in a simulation experiment to evaluate the performance of the controller design. A method for generating local models that constitute the design model is proposed. Sufficient conditions for stability and stabilizability of fuzzy models using fuzzy state-feedback controllers are given. The results obtained are illustrated with a numerical example involving a four-dimensional nonlinear model of a stick balancer.
Resumo:
The problem of signal tracking, in the presence of a disturbance signal in the plant, is solved using a zero-variation methodology. A state feedback controller is designed in order to minimise the H-2-norm of the closed-loop system, such that the effect of the disturbance is attenuated. Then, a state estimator is designed and the modification of the zeros is used to minimise the H-infinity-norm from the reference input signal to the error signal. The error is taken to be the difference between the reference and the output signals, thereby making it a tracking problem. The design is formulated in a linear matrix inequality framework, such that the optimal solution of the stated control problem is obtained. Practical examples illustrate the effectiveness of the proposed method.