968 resultados para Stars, Early-type
Resumo:
We detail an innovative new technique for measuring the two-dimensional (2D) velocity moments (rotation velocity, velocity dispersion and Gauss-Hermite coefficients h(3) and h(4)) of the stellar populations of galaxy haloes using spectra from Keck DEIMOS (Deep Imaging Multi-Object Spectrograph) multi-object spectroscopic observations. The data are used to reconstruct 2D rotation velocity maps. Here we present data for five nearby early-type galaxies to similar to three effective radii. We provide significant insights into the global kinematic structure of these galaxies, and challenge the accepted morphological classification in several cases. We show that between one and three effective radii the velocity dispersion declines very slowly, if at all, in all five galaxies. For the two galaxies with velocity dispersion profiles available from planetary nebulae data we find very good agreement with our stellar profiles. We find a variety of rotation profiles beyond one effective radius, i.e. rotation speed remaining constant, decreasing and increasing with radius. These results are of particular importance to studies which attempt to classify galaxies by their kinematic structure within one effective radius, such as the recent definition of fast- and slow-rotator classes by the Spectrographic Areal Unit for Research on Optical Nebulae project. Our data suggest that the rotator class may change when larger galactocentric radii are probed. This has important implications for dynamical modelling of early-type galaxies. The data from this study are available on-line.
Resumo:
The goal of this thesis is to analyze the possibility of using early-type galaxies to place evolutionary and cosmological constraints, by both disentangling what is the main driver of ETGs evolution between mass and environment, and developing a technique to constrain H(z) and the cosmological parameters studying the ETGs age-redshift relation. The (U-V) rest-frame color distribution is studied as a function of mass and environment for two sample of ETGs up to z=1, extracted from the zCOSMOS survey with a new selection criterion. The color distributions and the slopes of the color-mass and color-environment relations are studied, finding a strong dependence on mass and a minor dependence on environment. The spectral analysis performed on the D4000 and Hδ features gives results validating the previous analysis. The main driver of galaxy evolution is found to be the galaxy mass, the environment playing a subdominant but non negligible role. The age distribution of ETGs is also analyzed as a function of mass, providing strong evidences supporting a downsizing scenario. The possibility of setting cosmological constraints studying the age-redshift relation is studied, discussing the relative degeneracies and model dependencies. A new approach is developed, aiming to minimize the impact of systematics on the “cosmic chronometer” method. Analyzing theoretical models, it is demonstrated that the D4000 is a feature correlated almost linearly with age at fixed metallicity, depending only minorly on the models assumed or on the SFH chosen. The analysis of a SDSS sample of ETGs shows that it is possible to use the differential D4000 evolution of the galaxies to set constraints to cosmological parameters in an almost model-independent way. Values of the Hubble constant and of the dark energy EoS parameter are found, which are not only fully compatible, but also with a comparable error budget with the latest results.
Resumo:
Early-Type galaxies (ETGs) are embedded in hot (10^6-10^7 K), X-ray emitting gaseous haloes, produced mainly by stellar winds and heated by Type Ia supernovae explosions, by the thermalization of stellar motions and occasionally by the central super-massive black hole (SMBH). In particular, the thermalization of the stellar motions is due to the interaction between the stellar and the SNIa ejecta and the hot interstellar medium (ISM) already residing in the ETG. A number of different astrophysical phenomena determine the X-ray properties of the hot ISM, such as stellar population formation and evolution, galaxy structure and internal kinematics, Active Galactic Nuclei (AGN) presence, and environmental effects. With the aid of high-resolution hydrodynamical simulations performed on state-of-the-art galaxy models, in this Thesis we focus on the effects of galaxy shape, stellar kinematics and star formation on the evolution of the X-ray coronae of ETGs. Numerical simulations show that the relative importance of flattening and rotation are functions of the galaxy mass: at low galaxy masses, adding flattening and rotation induces a galactic wind, thus lowering the X-ray luminosity; at high galaxy masses the angular momentum conservation keeps the central regions of rotating galaxies at low density, whereas in non-rotating models a denser and brighter atmosphere is formed. The same dependence from the galaxy mass is present in the effects of star formation (SF): in light galaxies SF contributes to increase the spread in Lx, while at high galaxy masses the halo X-ray properties are marginally sensitive to SF effects. In every case, the star formation rate at the present epoch quite agrees with observations, and the massive, cold gaseous discs are partially or completely consumed by SF on a time-scale of few Gyr, excluding the presence of young stellar discs at the present epoch.
Resumo:
Dynamical models of galaxies are a powerful tool to study and understand several astrophysical problems related to galaxy formation and evolution. This thesis is focussed on a particular type of dynamical models, that are widely used in literature, and are based on the solution of the Jeans equations. By means of a numerical Jeans solver code, developed on purpose and able to build state-of-the-art advanced axisymmetric galaxy models, two of the main currently investigated issues in the field of research of early-type galaxies (ETGs) are addressed. The first topic concerns the hot and X-ray emitting gaseous coronae that surround ETGs. The main goal is to explain why flat and rotating galaxies generally exhibit haloes with lower gas temperatures and luminosities with respect to rounder and velocity dispersion supported systems. The second astrophysical problem addressed concerns instead the stellar initial mass function (IMF) of ETGs. Nowadays, this is a very controversial issue due to a growing number of works on ETGs, based on different and independent techniques, that show evidences of a systematic variation of the IMF normalization as a function of galaxy velocity dispersion or mass. These studies are changing the previous opinion that the IMF of ETGs was the same as that of spiral galaxies, and hence universal throughout the whole large family of galaxies.
Resumo:
Holding the major share of stellar mass in galaxies and being also old and passively evolving, early-type galaxies (ETGs) are the primary probes in investigating these various evolution scenarios, as well as being useful means to provide insights on cosmological parameters. In this thesis work I focused specifically on ETGs and on their capability in constraining galaxy formation and evolution; in particular, the principal aims were to derive some of the ETGs evolutionary parameters, such as age, metallicity and star formation history (SFH) and to study their age-redshift and mass-age relations. In order to infer galaxy physical parameters, I used the public code STARLIGHT: this program provides a best fit to the observed spectrum from a combination of many theoretical models defined in user-made libraries. the comparison between the output and input light-weighted ages shows a good agreement starting from SNRs of ∼ 10, with a bias of ∼ 2.2% and a dispersion 3%. Furthermore, also metallicities and SFHs are well reproduced. In the second part of the thesis I performed an analysis on real data, starting from Sloan Digital Sky Survey (SDSS) spectra. I found that galaxies get older with cosmic time and with increasing mass (for a fixed redshift bin); absolute light-weighted ages, instead, result independent from the fitting parameters or the synthetic models used. Metallicities, instead, are very similar from each other and clearly consistent with the ones derived from the Lick indices. The predicted SFH indicates the presence of a double burst of star formation. Velocity dispersions and extinctiona are also well constrained, following the expected behaviours. As a further step, I also fitted single SDSS spectra (with SNR∼ 20), to verify that stacked spectra gave the same results without introducing any bias: this is an important check, if one wants to apply the method at higher z, where stacked spectra are necessary to increase the SNR. Our upcoming aim is to adopt this approach also on galaxy spectra obtained from higher redshift Surveys, such as BOSS (z ∼ 0.5), zCOSMOS (z 1), K20 (z ∼ 1), GMASS (z ∼ 1.5) and, eventually, Euclid (z 2). Indeed, I am currently carrying on a preliminary study to estabilish the applicability of the method to lower resolution, as well as higher redshift (z 2) spectra, just like the Euclid ones.
Resumo:
Aims. Despite their importance to a number of astrophysical fields, the lifecycles of very massive stars are still poorly defined. In order to address this shortcoming, we present a detailed quantitative study of the physical properties of four early-B hypergiants (BHGs) of spectral type B1-4 Ia+; Cyg OB2 #12, ζ1 Sco, HD 190603 and BP Cru. These are combined with an analysis of their long-term spectroscopic and photometric behaviour in order to determine their evolutionary status. Methods. Quantitative analysis of UV–radio photometric and spectroscopic datasets was undertaken with a non-LTE model atmosphere code in order to derive physical parameters for comparison with apparently closely related objects, such as B supergiants (BSGs) and luminous blue variables (LBVs), and theoretical evolutionary predictions. Results. The long-term photospheric and spectroscopic datasets compiled for the early-B HGs revealed that they are remarkably stable over long periods ( ≥ 40 yrs), with the possible exception of ζ1 Sco prior to the 20th century; in contrast to the typical excursions that characterise LBVs. Quantitative analysis of ζ1 Sco, HD 190603 and BP Cru yielded physical properties intermediate between BSGs and LBVs; we therefore suggest that BHGs are the immediate descendants and progenitors (respectively) of such stars, for initial masses in the range ~30−60 M⊙. Comparison of the properties of ζ1 Sco with the stellar population of its host cluster/association NGC 6231/Sco OB1 provides further support for such an evolutionary scenario. In contrast, while the wind properties of Cyg OB2 #12 are consistent with this hypothesis, the combination of extreme luminosity and spectroscopic mass (~110 M⊙) and comparatively low temperature means it cannot be accommodated in such a scheme. Likewise, despite its co-location with several LBVs above the Humphreys-Davidson (HD) limit, the lack of long term variability and its unevolved chemistry apparently excludes such an identification. Since such massive stars are not expected to evolve to such cool temperatures, instead traversing an O4-6Ia → O4-6Ia+ → WN7-9ha pathway, the properties of Cyg OB2 #12 are therefore difficult to understand under current evolutionary paradigms. Finally, we note that as with AG Car in its cool phase, despite exceeding the HD limit, the properties of Cyg OB2 #12 imply that it lies below the Eddington limit – thus we conclude that the HD limit does not define a region of the HR diagram inherently inimical to the presence of massive stars.
Resumo:
Context: Model atmosphere analyses have been previously undertaken for both Galactic and extragalactic B-type supergiants. By contrast, little attention has been given to a comparison of the properties of single supergiants and those that are members of multiple systems.
Aims: Atmospheric parameters and nitrogen abundances have been estimated for all the B-type supergiants identified in the VLT-FLAMES Tarantula survey. These include both single targets and binary candidates. The results have been analysed to investigate the role of binarity in the evolutionary history of supergiants.
Methods: tlusty non-local thermodynamic equilibrium (LTE) model atmosphere calculations have been used to determine atmospheric parameters and nitrogen abundances for 34 single and 18 binary supergiants. Effective temperatures were deduced using the silicon balance technique, complemented by the helium ionisation in the hotter spectra. Surface gravities were estimated using Balmer line profiles and microturbulent velocities deduced using the silicon spectrum. Nitrogen abundances or upper limits were estimated from the Nii spectrum. The effects of a flux contribution from an unseen secondary were considered for the binary sample. Results. We present the first systematic study of the incidence of binarity for a sample of B-type supergiants across the theoretical terminal age main sequence (TAMS). To account for the distribution of effective temperatures of the B-type supergiants it may be necessary to extend the TAMS to lower temperatures. This is also consistent with the derived distribution of mass discrepancies, projected rotational velocities and nitrogen abundances, provided that stars cooler than this temperature are post-red supergiant objects. For all the supergiants in the Tarantula and in a previous FLAMES survey, the majority have small projected rotational velocities. The distribution peaks at about 50 km s-1 with 65% in the range 30 km s-1 ≤ νe sin i ≤ 60 km s-1. About ten per cent have larger ve sin i (≥100 km s-1), but surprisingly these show little or no nitrogen enhancement. All the cooler supergiants have low projected rotational velocities of ≤70 km s-1 and high nitrogen abundance estimates, implying that either bi-stability braking or evolution on a blue loop may be important. Additionally, there is a lack of cooler binaries, possibly reflecting the small sample sizes. Single-star evolutionary models, which include rotation, can account for all of the nitrogen enhancement in both the single and binary samples. The detailed distribution of nitrogen abundances in the single and binary samples may be different, possibly reflecting differences in their evolutionary history.
Conclusions: The first comparative study of single and binary B-type supergiants has revealed that the main sequence may be significantly wider than previously assumed, extending to Teff = 20 000 K. Some marginal differences in single and binary atmospheric parameters and abundances have been identified, possibly implying non-standard evolution for some of the sample. This sample as a whole has implications for several aspects of our understanding of the evolutionary status of blue supergiants.
Resumo:
We present K-band spectra of newly born OB stars in the obscured Galactic giant H II region W51A and approximate to 0.8 '' angular resolution images in the J, H, and K(S)-bands. Four objects have been spectroscopically classified as O-type stars. The mean spectroscopic parallax of the four stars gives a distance of 2.0 +/- 0.3 kpc (error in the mean), significantly smaller than the radio recombination line kinematic value of 5.5 kpc or the values derived from maser proper motion observations (6-8 kpc). The number of Lyman continuum photons from the contribution of all massive stars (NLyc approximate to 1.5 x 10(50) s(-1)) is in good agreement with that inferred from radio recombination lines (NLyc = 1.3 x 10(50) s(-1)) after accounting for the smaller distance derived here. We present analysis of archival high angular resolution images (NAOS CONICA at VLT and T-ReCS at Gemini) of the compact region W51 IRS 2. The K(S)-band images resolve the infrared source IRS 2 indicating that it is a very young compact H II region. Sources IRS 2E was resolved into compact cluster (within 660 AU of projected distance) of three objects, but one of them is just bright extended emission. W51d1 and W51d2 were identified with compact clusters of three objects (maybe four in the case of W51d1) each one. Although IRS 2E is the brightest source in the K-band and at 12.6 mu m, it is not clearly associated with a radio continuum source. Our spectrum of IRS 2E shows, similar to previous work, strong emission in Br gamma and He I, as well as three forbidden emission lines of Fe III and emission lines of molecular hydrogen (H(2)) marking it as a massive young stellar object.
Resumo:
Context. Classical Be stars are rapid rotators of spectral type late O to early A and luminosity class V-III, which exhibit Balmer emission lines and often a near infrared excess originating in an equatorially concentrated circumstellar envelope, both produced by sporadic mass ejection episodes. The causes of the abnormal mass loss (the so-called Be phenomenon) are as yet unknown. Aims. For the first time, we can now study in detail Be stars outside the Earth's atmosphere with sufficient temporal resolution. We investigate the variability of the Be Star CoRoT-ID 102761769 observed with the CoRoT satellite in the exoplanet field during the initial run. Methods. One low-resolution spectrum of the star was obtained with the INT telescope at the Observatorio del Roque de los Muchachos. A time series analysis was performed using both cleanest and singular spectrum analysis algorithms to the CoRoT light curve. To identify the pulsation modes of the observed frequencies, we computed a set of models representative of CoRoT-ID 102761769 by varying its main physical parameters inside the uncertainties discussed. Results. We found two close frequencies related to the star. They are 2.465 c d(-1) (28.5 mu Hz) and 2.441 c d(-1) (28.2 mu Hz). The precision to which those frequencies were found is 0.018 c d(-1) (0.2 mu Hz). The projected stellar rotation was estimated to be 120 km s(-1) from the Fourier transform of spectral lines. If CoRoT-ID 102761769 is a typical Galactic Be star it rotates near the critical velocity. The critical rotation frequency of a typical B5-6 star is about 3.5 c d(-1) (40.5 mu Hz), which implies that the above frequencies are really caused by stellar pulsations rather than star's rotation.
Resumo:
Spectrophotometric distances in the K band have been reported by different authors for a number of obscured Galactic H II regions. Almost 50% of them show large discrepancies compared to the classical method using radial velocities measured in the radio spectral region. In order to provide a crucial test of both methods, we selected a target that does not present particular difficulty for any method and which has been measured by as many techniques as possible. The W3 star-forming complex, located in the Perseus arm, offers a splendid opportunity for such a task. We used the Near-Infrared Integral Field Spectrograph on the Frederick C. Gillett Gemini North telescope to classify candidate ""naked photosphere"" OB stars based on Two Micron All Sky Survey photometry. Two of the targets are revealed to be mid-O-type main-sequence stars leading to a distance of d = 2.20 kpc. This is in excellent agreement with the spectrophotometric distance derived in the optical band (d = 2.18 pc) and with a measurement of the W3 trigonometric parallax (d = 1.95 kpc). Such results confirm that the spectrophotometric distances in the K band are reliable. The radio-derived kinematic distance, on the contrary, gives a distance twice as large (d = 4.2 kpc). This indicates that this region of the Perseus arm does not follow the Galactic rotation curve, and this may also be the case for other H II regions for which discrepancies have been found.
Resumo:
We report near-infrared spectroscopic observations of the Eta Carinae massive binary system during 2008-2009 using the CRIRES spectrograph mounted on the 8m UT 1 Very Large Telescope (VLT Antu). We detect a strong, broad absorption wing in He I lambda 10833 extending up to -1900 km s(-1) across the 2009.0 spectroscopic event. Analysis of archival Hubble Space Telescope/Space Telescope Imaging Spectrograph ultraviolet and optical data identifies a similar high-velocity absorption (up to -2100 km s(-1)) in the ultraviolet resonance lines of Si IV lambda lambda 1394, 1403 across the 2003.5 event. Ultraviolet resonance lines from low-ionization species, such as Si II lambda lambda 1527, 1533 and CII lambda lambda 1334, 1335, show absorption only up to -1200 km s(-1), indicating that the absorption with velocities -1200 to -2100 km s(-1) originates in a region markedly more rapidly moving and more ionized than the nominal wind of the primary star. Seeing-limited observations obtained at the 1.6m OPD/LNA telescope during the last four spectroscopic cycles of Eta Carinae (1989-2009) also show high-velocity absorption in He I lambda 10833 during periastron. Based on the large OPD/LNA dataset, we determine that material with velocities more negative than -900 km s(-1) is present in the phase range 0.976 <= phi <= 1.023 of the spectroscopic cycle, but absent in spectra taken at phi <= 0.947 and phi >= 1.049. Therefore, we constrain the duration of the high-velocity absorption to be 95 to 206 days (or 0.047 to 0.102 in phase). We propose that the high-velocity absorption component originates in shocked gas in the wind-wind collision zone, at distances of 15 to 45 AU in the line-of-sight to the primary star. With the aid of three-dimensional hydrodynamical simulations of the wind-wind collision zone, we find that the dense high-velocity gas is along the line-of-sight to the primary star only if the binary system is oriented in the sky such that the companion is behind the primary star during periastron, corresponding to a longitude of periastron of omega similar to 240 degrees-270 degrees. We study a possible tilt of the orbital plane relative to the Homunculus equatorial plane and conclude that our data are broadly consistent with orbital inclinations in the range i = 40 degrees-60 degrees.
Resumo:
Context. We present spectroscopic ground-based observations of the early Be star HD 49330 obtained simultaneously with the CoRoT-LRA1 run just before the burst observed in the CoRoT data. Aims. Ground-based spectroscopic observations of the early Be star HD 49330 obtained during the precursor phase and just before the start of an outburst allow us to disantangle stellar and circumstellar contributions and identify modes of stellar pulsations in this rapidly rotating star. Methods. Time series analysis (TSA) is performed on photospheric line profiles of He I and Si III by means of the least squares method. Results. We find two main frequencies f1 = 11.86 c d(-1) and f2 = 16.89 c d(-1) which can be associated with high order p-mode pulsations. We also detect a frequency f3 = 1.51 c d(-1) which can be associated with a low order g-mode. Moreover we show that the stellar line profile variability changed over the spectroscopic run. These results are in agreement with the results of the CoRoT data analysis, as shown in Huat et al. (2009). Conclusions. Our study of mid-and short-term spectroscopic variability allows the identification of p-and g-modes in HD 49330. It also allows us to display changes in the line profile variability before the start of an outburst. This brings new constraints for the seimic modelling of this star.
Resumo:
Context. There is growing evidence that a treatment of binarity amongst OB stars is essential for a full theory of stellar evolution. However the binary properties of massive stars - frequency, mass ratio & orbital separation - are still poorly constrained. Aims. In order to address this shortcoming we have undertaken a multiepoch spectroscopic study of the stellar population of the young massive cluster Westerlund 1. In this paper we present an investigation into the nature of the dusty Wolf-Rayet star and candidate binary W239. Methods. To accomplish this we have utilised our spectroscopic data in conjunction with multi-year optical and near-IR photometric observations in order to search for binary signatures. Comparison of these data to synthetic non-LTE model atmosphere spectra were used to derive the fundamental properties of the WC9 primary. Results. We found W239 to have an orbital period of only similar to 5.05 days, making it one of the most compact WC binaries yet identified. Analysis of the long term near-IR lightcurve reveals a significant flare between 2004-6. We interpret this as evidence for a third massive stellar component in the system in a long period (> 6 yr), eccentric orbit, with dust production occuring at periastron leading to the flare. The presence of a near-IR excess characteristic of hot (similar to 1300 K) dust at every epoch is consistent with the expectation that the subset of persistent dust forming WC stars are short (< 1 yr) period binaries, although confirmation will require further observations. Non-LTE model atmosphere analysis of the spectrum reveals the physical properties of the WC9 component to be fully consistent with other Galactic examples. Conclusions. The simultaneous presence of both short period Wolf-Rayet binaries and cool hypergiants within Wd 1 provides compelling evidence for a bifurcation in the post-Main Sequence evolution of massive stars due to binarity. Short period O+OB binaries will evolve directly to the Wolf-Rayet phase, either due to an episode of binary mediated mass loss - likely via case A mass transfer or a contact configuration - or via chemically homogenous evolution. Conversely, long period binaries and single stars will instead undergo a red loop across the HR diagram via a cool hypergiant phase. Future analysis of the full spectroscopic dataset for Wd 1 will constrain the proportion of massive stars experiencing each pathway; hence quantifying the importance of binarity in massive stellar evolution up to and beyond supernova and the resultant production of relativistic remnants.
Resumo:
Context. HD 181231 is a B5IVe star, which has been observed with the CoRoT satellite during similar to 5 consecutive months and simultaneously from the ground in spectroscopy and spectropolarimetry. Aims. By analysing these data, we aim to detect and characterize as many pulsation frequencies as possible, to search for the presence of beating effects possibly at the origin of the Be phenomenon. Our results will also provide a basis for seismic modelling. Methods. The fundamental parameters of the star are determined from spectral fitting and from the study of the circumstellar emission. The CoRoT photometric data and ground-based spectroscopy are analysed using several Fourier techniques: CLEAN-NG, PASPER, and TISAFT, as well as a time-frequency technique. A search for a magnetic field is performed by applying the LSD technique to the spectropolarimetric data. Results. We find that HD 181231 is a B5IVe star seen with an inclination of similar to 45 degrees. No magnetic field is detected in its photosphere. We detect at least 10 independent significant frequencies of variations among the 54 detected frequencies, interpreted in terms of non-radial pulsation modes and rotation. Two longer-term variations are also detected: one at similar to 14 days resulting from a beating effect between the two main frequencies of short-term variations, the other at similar to 116 days due either to a beating of frequencies or to a zonal pulsation mode. Conclusions. Our analysis of the CoRoT light curve and ground-based spectroscopic data of HD 181231 has led to the determination of the fundamental and pulsational parameters of the star, including beating effects. This will allow a precise seismic modelling of this star.
Resumo:
Context. Be stars undergo outbursts producing a circumstellar disk from the ejected material. The beating of non-radial pulsations has been put forward as a possible mechanism of ejection. Aims. We analyze the pulsational behavior of the early B0.5IVe star HD 49330 observed during the first CoRoT long run towards the Galactical anticenter (LRA1). This Be star is located close to the lower edge of the beta Cephei instability strip in the HR diagram and showed a 0.03 mag outburst during the CoRoT observations. It is thus an ideal case for testing the aforementioned hypothesis. Methods. We analyze the CoRoT light curve of HD 49330 using Fourier methods and non-linear least square fitting. Results. In this star, we find pulsation modes typical of beta Cep stars (p modes) and SPB stars (g modes) with amplitude variations along the run directly correlated with the outburst. These results provide new clues about the origin of the Be phenomenon as well as strong constraints on the seismic modelling of Be stars.