1000 resultados para Spraying technology
Resumo:
Citriculture normally uses high application volumes in pesticide solutions (of 2.000 to 5.000 L ha(-1)) to control pests and diseases that affect the crop, which generates an increase in operational costs. For this reason, diverse systems of application are being developed to reduce application volumes and improve the uniformity of pesticide deposition. The goal of this work was to evaluate the efficiency of two application systems of pesticides in citrus trees. One system used a prototype for terrestrial application with rotary disc atomizers that are widely used in agricultural aviation, and the other system used hollow cone tip hydraulics. For the treatment of the trees the insecticide Metidation was used at the dose of 180 gr per hectare. To study the droplet spectrum, water-sensitive papers were installed at different positions in the trees canopy, and for the study of insecticide deposition leaves of the treated plants were collected. The water-sensitive papers were collected and analyzed using a computerized image analysis system (e-Sprinkle, EMBRAPA, Sao Paulo, Brazil), and the leaves analyzed by the technique of gas chromatography. Pesticide deposition was similar in both application system, although the solution volume used by the application system equipped with rotary disc atomizers was one quarter of the volume used by the application system equipped with hydraulic tips, reducing considerably the cost of the phytosanitary treatments.
Resumo:
ABSTRACTScarlet Morning Glory is considered to be an infesting weed that affects several crops and causes serious damage. The application of chemical herbicides, which is the primary control method, requires a broad knowledge of the various characteristics of the solution and application technology for a more efficient phytosanitary treatment. Therefore this study aimed to characterize the effect of rainfall incidence on the control of Ipomoea hederifolia, considering droplet size, surface tension, contact angle of droplets formed by herbicides liquid on vegetal and artificial surfaces, associated to adjuvants and the volumetric distribution profile of the spray jet. The addition of the adjuvants to the herbicide spraying liquid improved the application quality, as it influenced the angle formed by the spray by broadening the deposition band of the spray nozzle and thus the possible distance between the nozzles on spray boom and due the changes at droplet size, which contribute to a safety application. The rainfall occurrence affected negatively the weed control with the different spraying liquids and also the dry matter weight, suggesting that the phytosanitary product applied was washed off.
Resumo:
ABSTRACT Tractor traveling speed can influence the quality of spraying depending on the application technology used. This study aimed to evaluate the droplet spectrum, the deposition and uniformity of spray distribution with different spraying systems and traveling speeds of a self-propelled sprayer in two phenological stages of the cotton plant (B9 and F13). The experimental design was randomized blocks and treatments were three spraying techniques: common flat spray tips; tilted flat jet with air induction, at 120 L ha-1; and rotary atomizer disk, 20 L ha-1, combined with four traveling speeds: 12, 15, 18 and 25 km h-1, with four replications. Spraying deposition was evaluated for both leaf surfaces from the cotton plant apex and base (stage B9) and middle part of the plant (stage F13) with a cupric marker. A laser particle analyzer also assessed the droplet spectrum. The centrifugal power spray system produces more homogeneous droplet spectrum and increased penetration of droplets into the canopy in both phenological stages. Variation on the operating conditions necessary for increased traveling speed negatively influences the pattern of spraying deposits.
Resumo:
O efeito de diversas tecnologias de aplicação foi avaliado sobre a concentração, viabilidade e eficácia dos juvenis infectantes dos nematóides Heterorhabditis indica Poinar, Karunakar & David (IBCB-n5) e Steinernema sp. (IBCB-n6) no controle da lagarta-do-cartucho Spodoptera frugiperda Smith na cultura do milho. Para o controle da lagarta-do-cartucho no terceiro estádio em placas de Petri foram necessários 280 juvenis infectantes de Steinernema sp., enquanto que 400 juvenis infectantes de H. indica controlaram apenas 75% das lagartas. Podem-se pulverizar os entomopatógenos, sem que haja perda significativa na sua concentração e viabilidade, com equipamentos que forneçam carga elétrica à calda, ponta centrífuga e pontas hidráulicas. Entretanto, o emprego de pulverizadores com pontas que requerem elementos filtrantes com malha igual a 100 resultou em decréscimo na concentração de juvenis infectantes de H. indica e Steinernema sp., de 28% e 53%, respectivamente. Os tensoativos organosiliconado e etoxilados não afetaram a viabilidade dos juvenis infectantes de Steinernema sp. Nos experimentos de pulverização em plantas de milho (V6) com Steinernema sp., doses equivalentes a até 288 milhões de juvenis infectantes por hectare, diluídos em volume de calda de até 800 L ha-1 com 0,01 % do tensoativo etoxilado, ou nesse volume seguido de exposição a chuva artificial (lâmina de água de 6 mm), não foram suficientes para o controle de S. frugiperda em casa-de-vegetação.
Resumo:
Stainless steel coatings obtained by High Velocity Oxygen Fuel (HVOF) were characterized using optical (OM) and scanning electron microscopy (SEM), electron probe micro-analysis, X-ray diffraction (XRD), open-circuit potential (E-OC) measurements, electrochemical impedance spectroscopy (EIS) and polarisation tests. Differences among coated steels were mainly related with the gun-substrate distance parameter (310 nm for samples A and B and 260 min for C and D). The open-circuit potential values measured for all the samples after 18 h of immersion in aerated and unstirred 3.4% NaCl solution were: - 0.334, - 0.360, - 0.379 and - 0.412 V vs. Ag/AgCl,KClsat. for samples A to D, respectively. For EIS measurements, Nyquist plots showed higher capacitive semi-circle for samples sprayed at longer distance, indicating higher corrosion resistance in NaCl solution. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Pesticides applications have been described by many researches as a very inefficient process. In some cases, there are reports that only 0.02% of the applied products are used for the effective control of the problem. The main factor that influences pesticides applications is the droplet size formed on spraying nozzles. Many parameters affects the dynamic of the droplets, like wind, temperature, relative humidity, and others. Small droplets are biologically more active, but they are affected by evaporation and drift. On the other hand, the great droplets do not promote a good distribution of the product on the target. In this sense, associated with the risk of non target areas contamination and with the high costs involved in applications, the knowledge of the droplet size is of fundamental importance in the application technology. When sophisticated technology for droplets analysis is unavailable, is common the use of artificial targets like water-sensitive paper to sample droplets. On field sampling, water-sensitive papers are placed on the trials where product will be applied. When droplets impinging on it, the yellow surface of this paper will be stained dark blue, making easy their recognition. Collected droplets on this papers have different kinds of sizes. In this sense, the determination of the droplet size distribution gives a mass distribution of the material and so, the efficience of the application of the product. The stains produced by droplets shows a spread factor proportional to their respectives initial sizes. One of methodologies to analyse the droplets is a counting and measure of the droplets made in microscope. The Porton N-G12 graticule, that shows equaly spaces class intervals on geometric progression of square 2, are coulpled to the lens of the microscope. The droplet size parameters frequently used are the Volumetric Median Diameter (VMD) and the Numeric Median Diameter. On VMD value, a representative droplets sample is divided in two equal parts of volume, in such away one part contains droplets of sizes smaller than VMD and the other part contains droplets of sizes greater that VMD. The same process is done to obtaining the NMD, which divide the sample in two equal parts in relation to the droplets size. The ratio between VMD and NMD allows the droplets uniformity evaluation. After that, the graphics of accumulated probability of the volume and size droplets are plotted on log scale paper (accumulated probability versus median diameter of each size class). The graphics provides the NMD on the x-axes point corresponding to the value of 50% founded on the y-axes. All this process is very slow and subjected to operator error. So, in order to decrease the difficulty envolved with droplets measuring it was developed a numeric model, implemented on easy and accessfull computational language, which allows approximate VMD and NMD values, with good precision. The inputs to this model are the frequences of the droplets sizes colected on the water-sensitive paper, observed on the Porton N-G12 graticule fitted on microscope. With these data, the accumulated distribution of the droplet medium volumes and sizes are evaluated. The graphics obtained by plotting this distributions allow to obtain the VMD and NMD using linear interpolation, seen that on the middle of the distributions the shape of the curves are linear. These values are essential to evaluate the uniformity of droplets and to estimate the volume deposited on the observed paper by the density (droplets/cm2). This methodology to estimate the droplets volume was developed by 11.0.94.224 Project of the CNPMA/EMBRAPA. Observed data of herbicides aerial spraying samples, realized by Project on Pelotas/RS county, were used to compare values obtained manual graphic method and with those obtained by model has shown, with great precision, the values of VMD and NMD on each sampled collector, allowing to estimate a quantities of deposited product and, by consequence, the quantities losses by drifty. The graphics of variability of VMD and NMD showed that the quantity of droplets that reachs the collectors had a short dispersion, while the deposited volume shows a great interval of variation, probably because the strong action of air turbulence on the droplets distribution, enfasizing the necessity of a deeper study to verify this influences on drift.
Resumo:
Multicomponent white cast iron is a new alloy that belongs to system Fe-C-Cr-W-Mo-V, and because of its excellent wear resistance it is used in the manufacture of hot rolling mills rolls. To date, this alloy has been processed by casting, powder metallurgy, and spray forming. The high-velocity oxyfuel process is now also considered for the manufacture of components with this alloy. The effects of substrate, preheating temperature, and coating thickness on bond strength of coatings have been determined. Substrates of AISI 1020 steel and of cast iron with preheating of 150 A degrees C and at room temperature were used to apply coatings with 200 and 400 mu m nominal thickness. The bond strength of coatings was measured with the pull-off test method and the failure mode by scanning electron microscopic analysis. Coatings with thickness of 200 mu m and applied on substrates of AISI 1020 steel with preheating presented bond strength of 87 +/- A 4 MPa.
Resumo:
There are several tools in the literature that support innovation in organizations. Some of the most cited are the so-called technology roadmapping methods, also known as TRM. However, these methods are designed primarily for organizations that adopt the market pull strategy of technology-product integration. Organizations that adopt the technology push integration strategy are neglected in the literature. Furthermore, with the advent of open innovation, it is possible to note the need to consider the adoption of partnerships in the innovation process. Thus, this study proposes a method of technology roadmapping, identified as method for technology push (MTP), applicable to organizations that adopt the technology push integration strategy, such as SMEs and independent research centers in an open-innovation environment. The method was developed through action-research and was assessed from two analytical standpoints: externally, via a specific literature review on its theoretical contributions, and internally, through the analysis of potential users` perceptions on the feasibility of applying MTP. The results indicate both the unique character of the method and its perceived implementation feasibility. Future research is suggested in order to validate the method in different types of organizations (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Many authors point out that the front-end of new product development (NPD) is a critical success factor in the NPD process and that numerous companies face difficulties in carrying it out appropriately. Therefore, it is important to develop new theories and proposals that support the effective implementation of this earliest phase of NPD. This paper presents a new method to support the development of front-end activities based on integrating technology roadmapping (TRM) and project portfolio management (PPM). This new method, called the ITP Method, was implemented at a small Brazilian high-tech company in the nanotechnology industry to explore the integration proposal. The case study demonstrated that the ITP Method provides a systematic procedure for the fuzzy front-end and integrates innovation perspectives into a single roadmap, which allows for a better alignment of business efforts and communication of product innovation goals. Furthermore, the results indicated that the method may also improve quality, functional integration and strategy alignment. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
This paper presents a proposal for a Quality Management System for a generic GNSS Surveying Company as an alternative for management and service quality improvements. As a result of the increased demand for GNSS measurements, a large number of new or restructured companies were established to operate in that market. Considering that GNSS surveying is a new process, some changes must be performed in order to accommodate the old surveying techniques and the old fashioned management to the new reality. This requires a new management model that must be based on a well-described procedure sequence aiming at the Total Management Quality for the company. The proposed Quality Management System was based on the requirements of the Quality System ISO 9000:2000, applied to the whole company, focusing on the productive process of GNSS surveying work.
Resumo:
Considering the increasing popularity of network-based control systems and the huge adoption of IP networks (such as the Internet), this paper studies the influence of network quality of service (QoS) parameters over quality of control parameters. An example of a control loop is implemented using two LonWorks networks (CEA-709.1) interconnected by an emulated IP network, in which important QoS parameters such as delay and delay jitter can be completely controlled. Mathematical definitions are provided according to the literature, and the results of the network-based control loop experiment are presented and discussed.
Resumo:
This work presents a case study on technology assessment for power quality improvement devices. A system compatibility test protocol for power quality mitigation devices was developed in order to evaluate the functionality of three-phase voltage restoration devices. In order to validate this test protocol, the micro-DVR, a reduced power development platform for DVR (dynamic voltage restorer) devices, was tested and the results are discussed based on voltage disturbances standards. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
High velocity oxi-fuel (HVOF) thermal spray process has been used in order to deposit a new alloy known as multicomponent white cast iron. The coatings were characterized in terms of macrostructure, phase composition, porosity and hardness. Coating characteristics and properties were found to be dependent on the particles size range, spray distance, gases flow rate and oxygen to propane ratio. For set of parameters utilized in this job a narrow particle size range between 20 and 45 gm with a spray distance of 200 mm and oxygen to propane ratio of 4.6 are the preferred coating parameters. Coating porosity of 0.9% and hardness of 766 HV were obtained under these conditions. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
A green ceramic tape micro-heat exchanger was developed using Low Temperature Co-fired Ceramics technology (LTCC). The device was designed by using Computational Aided Design software and simulations were made using a Computational Fluid Dynamics package (COMSOL Multiphysics) to evaluate the homogeneity of fluid distribution in the microchannels. Four geometries were proposed and simulated in two and three dimensions to show that geometric details directly affect the distribution of velocity in the micro-heat exchanger channels. The simulation results were quite useful for the design of the microfluidic device. The micro-heat exchanger was then constructed using the LTCC technology and is composed of five thermal exchange plates in cross-flow arrangement and two connecting plates, with all plates stacked to form a device with external dimensions of 26 x 26 x 6 mm(3).