877 resultados para Spinal flexibility
Resumo:
Magnetic Resonance Imaging (MRI) offers a valuable research tool for the assessment of 3D spinal deformity in AIS, however the horizontal patient position imposed by conventional scanners removes the axial compressive loading on the spine which is an important determinant of deformity shape and magnitude in standing scoliosis patients. The objective of this study was to design, construct and test an MRI compatible compression device for research into the effect of axial loading on spinal deformity using supine MRI scans. The compression device was designed and constructed, consisting of a vest worn by the patient, which was attached via straps to a pneumatically actuated footplate. An applied load of 0.5 x bodyweight was remotely controlled by a unit in the scanner operator’s console. The entire device was constructed using non-metallic components for MRI compatibility. The device was evaluated by performing unloaded and loaded supine MRI scans on a series of 10 AIS patients. The study concluded that an MRI compatible compression device had been successfully designed and constructed, providing a research tool for studies into the effect of axial loading on 3D spinal deformity in scoliosis. The 3D axially loaded MR imaging capability developed in this study will allow future research investigations of the effect of axial loading on spinal rotation, and for imaging the response of scoliotic spinal tissues to axial loading.
Resumo:
Magnetic Resonance Imaging (MRI) offers a valuable research tool for the assessment of 3D spinal deformity in AIS, however the horizontal patient position imposed by conventional scanners removes the axial compressive loading on the spine. The objective of this study was to design, construct and test an MRI compatible compression device for research into the effect of axial loading on spinal deformity using supine MRI scans. The device was evaluated by performing unloaded and loaded supine MRI scans on a series of 10 AIS patients. The patient group had a mean initial (unloaded) major Cobb angle of 43±7º, which increased to 50±9º on application of the compressive load. The 7° increase in mean Cobb angle is consistent with that reported by a previous study comparing standing versus supine posture in scoliosis patients (Torell et al, 1985. Spine 10:425-7).
Resumo:
Scoliosis is a three-dimensional spinal deformity which requires surgical correction in progressive cases. In order to optimize correction and avoid complications following scoliosis surgery, patient-specific finite element models (FEM) are being developed and validated by our group. In this paper, the modeling methodology is described and two clinically relevant load cases are simulated for a single patient. Firstly, a pre-operative patient flexibility assessment, the fulcrum bending radiograph, is simulated to assess the model's ability to represent spine flexibility. Secondly, intra-operative forces during single rod anterior correction are simulated. Clinically, the patient had an initial Cobb angle of 44 degrees, which reduced to 26 degrees during fulcrum bending. Surgically, the coronal deformity corrected to 14 degrees. The simulated initial Cobb angle was 40 degrees, which reduced to 23 degrees following the fulcrum bending load case. The simulated surgical procedure corrected the coronal deformity to 14 degrees. The computed results for the patient-specific FEM are within the accepted clinical Cobb measuring error of 5 degrees, suggested that this modeling methodology is capable of capturing the biomechanical behaviour of a scoliotic human spine during anterior corrective surgery.
Resumo:
Therapy employing epidural electrostimulation holds great potential for improving therapy for patients with spinal cord injury (SCI) (Harkema et al., 2011). Further promising results from combined therapies using electrostimulation have also been recently obtained (e.g., van den Brand et al., 2012). The devices being developed to deliver the stimulation are highly flexible, capable of delivering any individual stimulus among a combinatorially large set of stimuli (Gad et al., 2013). While this extreme flexibility is very useful for ensuring that the device can deliver an appropriate stimulus, the challenge of choosing good stimuli is quite substantial, even for expert human experimenters. To develop a fully implantable, autonomous device which can provide useful therapy, it is necessary to design an algorithmic method for choosing the stimulus parameters. Such a method can be used in a clinical setting, by caregivers who are not experts in the neurostimulator's use, and to allow the system to adapt autonomously between visits to the clinic. To create such an algorithm, this dissertation pursues the general class of active learning algorithms that includes Gaussian Process Upper Confidence Bound (GP-UCB, Srinivas et al., 2010), developing the Gaussian Process Batch Upper Confidence Bound (GP-BUCB, Desautels et al., 2012) and Gaussian Process Adaptive Upper Confidence Bound (GP-AUCB) algorithms. This dissertation develops new theoretical bounds for the performance of these and similar algorithms, empirically assesses these algorithms against a number of competitors in simulation, and applies a variant of the GP-BUCB algorithm in closed-loop to control SCI therapy via epidural electrostimulation in four live rats. The algorithm was tasked with maximizing the amplitude of evoked potentials in the rats' left tibialis anterior muscle. These experiments show that the algorithm is capable of directing these experiments sensibly, finding effective stimuli in all four animals. Further, in direct competition with an expert human experimenter, the algorithm produced superior performance in terms of average reward and comparable or superior performance in terms of maximum reward. These results indicate that variants of GP-BUCB may be suitable for autonomously directing SCI therapy.
Resumo:
Study Design Retrospective study of surgical outcome. Objectives To evaluate quantitatively the changes in trunk surface deformities after scoliosis spinal surgery in Lenke 1A adolescent idiopathic scoliosis (AIS) patients and to compare it with changes in spinal measurements. Summary of Background Data Most studies documenting scoliosis surgical outcome used either radiographs to evaluate changes in the spinal curve or questionnaires to assess patients health-related quality of life. Because improving trunk appearance is a major reason for patients and their parents to seek treatment, this study focuses on postoperative changes in trunk surface deformities. Recently, a novel approach to quantify trunk deformities in a reliable, automatic, and noninvasive way has been proposed. Methods Forty-nine adolescents with Lenke 1A idiopathic scoliosis treated surgically were included. The back surface rotation and trunk lateral shift were computed on trunk surface acquisitions before and at least 6 months after surgery. We analyzed the effect of age, height, weight, curve severity, and flexibility before surgery, length of follow-up, and the surgical technique. For 25 patients with available three-dimensional (3D) spinal reconstructions, we compared changes in trunk deformities with changes in two-dimensional (2D) and 3D spinal measurements. Results The mean correction rates for the back surface rotation and the trunk lateral shift are 18% and 50%, respectively. Only the surgical technique had a significant effect on the correction rate of the back surface rotation. Direct vertebral derotation and reduction by spine translation provide a better correction of the rib hump (22% and 31% respectively) than the classic rod rotation technique (8%). The reductions of the lumbar Cobb angle and the apical vertebrae transverse rotation explain, respectively, up to 17% and 16% the reduction of the back surface rotation. Conclusions Current surgical techniques perform well in realigning the trunk; however, the correction of the deformity in the transverse plane proves to be more challenging. More analysis on the positive effect of vertebral derotation on the rib hump correction is needed. Level of evidence III.
Resumo:
Introduction: Spinal fusion is a widely and successfully performed strategy for the treatment of spinal deformities and degenerative diseases. The general approach has been to stabilize the spine with implants so that a solid bony fusion between the vertebrae can develop. However, new implant designs have emerged that aim at preservation or restoration of the motion of the spinal segment. In addition to static, load sharing principles, these designs also require a profound knowledge of kinematic and dynamic properties to properly characterise the in vivo performance of the implants. Methods: To address this, an apparatus was developed that enables the intraoperative determination of the load–displacement behavior of spinal motion segments. The apparatus consists of a sensor-equipped distractor to measure the applied force between the transverse processes, and an optoelectronic camera to track the motion of vertebrae and the distractor. In this intraoperative trial, measurements from two patients with adolescent idiopathic scoliosis with right thoracic curves were made at four motion segments each. Results: At a lateral bending moment of 5 N m, the mean flexibility of all eight motion segments was 0.18 ± 0.08°/N m on the convex side and 0.24 ± 0.11°/N m on the concave side. Discussion: The results agree with published data obtained from cadaver studies with and without axial preload. Intraoperatively acquired data with this method may serve as an input for mathematical models and contribute to the development of new implants and treatment strategies.
Resumo:
Active Grids are a form of grid infrastructure where the grid network is active and programmable. These grids directly support applications with value added services such as data migration, compression, adaptation and monitoring. Services such as these are particularly important for eResearch applications which by their very nature are performance critical and data intensive. We propose an architecture for improving the flexibility of Active Grids through web services. These enable Active Grid services to be easily and flexibly configured, monitored and deployed from practically any platform or application. The architecture is called WeSPNI ('Web Services based on Programmable Networks Infrastructure'). We present the architecture together with some early experimental results on using web services to monitor data movement in an active grid.
Resumo:
The measurement of Cobb angles from radiographs is routine practice in spinal clinics. The technique relies on the use and availability of specialist equipment such as a goniometer, cobbometer or protractor. The aim of this study was to validate the use of i-Phone (Apple Inc) combined with Tilt Meter Pro software as compared to a protractor in the measurement of Cobb angles. Between November 2008 and December 2008 20 patients were selected at random from the Paediatric Spine Research Groups Database. A power calculation was performed which indicated if n=240 measurements the study had a 96% chance of detecting a 5 degree difference between groups. All patients had idiopathic scoliosis with a range of curve types and severities. The study found the i-Phone combined with Tilt Meter Pro software offers a faster alternative to the traditional method of Cobb angle measurement. The use of i-Phone offers a more convenient way of measuring Cobb angles in the outpatient setting. The intra-observer repeatability of the iPhone is equivalent to the protractor in the measurement of Cobb angles.
Resumo:
Vendors provide reference process models as consolidated, off-the-shelf solutions to capture best practices in a given industry domain. Customers can then adapt these models to suit their specific requirements. Traditional process flexibility approaches facilitate this operation, but do not fully address it as they do not sufficiently take controlled change guided by vendors' reference models into account. This tension between the customer's freedom of adapting reference models, and the ability to incorporate with relatively low effort vendor-initiated reference model changes, thus needs to be carefully balanced. This paper introduces process extensibility as a new paradigm for customizing reference processes and managing their evolution over time. Process extensibility mandates a clear recognition of the different responsibilities and interests of reference model vendors and consumers, and is concerned with keeping the effort of customer-side reference model adaptations low while allowing sufficient room for model change.
Resumo:
The measurement of Cobb angles on radiographs of patients with spinal deformities is routine practice in spinal clinics. The technique relies on the use and availability of specialist equipment such as a goniometer, cobbometer or protractor. The aim of this study was to validate the use of i-Phone (Apple Inc) combined with Tilt Meter Pro software as compared to a protractor in the measurement of Cobb angles. The i-Phone combined with Tilt Meter Pro software offers a faster alternative to the traditional method of Cobb angle measurement. The use of i-Phone offers a more convenient way of measuring Cobb angles in the outpatient setting. The intra-observer repeatability of the iPhone is equivalent to the protractor in the measurement of Cobb angles.
Resumo:
INTRODUCTION Inflammation is a protective attempt to facilitate the removal of damaged tissue and to initiate the healing response in other tissues. However, after spinal cord injury (SCI), this response is prolonged leading to secondary degeneration and glial scarring. Here, we investigate the potential of sustained delivery of pro-inflammatory factors vascular endothelial growth factor (VEGF) and platelet derived growth factor (PDGF) to increase early inflammatory events and promote inflammatory resolution. Method Animal ethics approval was obtained from the Queensland University of Technology. Adult Wistar-Kyoto rats (12-16 weeks old) were subjected to laminectomies and T10 hemisections. Animals were then randomised to treatment (implantation of osmotic pump (Alzet) loaded with 5ug VEGF & 5 ug PDGF) or control groups (lesion control or lesion plus pump delivering PBS). Rats were sacrificed at one month and the spinal cords were harvested and examined by immunohistology, using anti-neurofilament-200(NF200) and anti- ionized calcium binding adapter molecule 1 (Iba1). One way ANOVA was used for statistic analysis. Results At 1 month, active pump-treated cords showed a high level of axonal filament throughout the defects as compared to the control groups. The mean lesion size, as measured by NF200, was 0.47mm2 for the lesion control, 0.39mm2 for the vehicle control and 0.078mm2 for the active pump group. Significant differences were detected between the active pump group and the two control groups (AP vs LC p= 0.017 AG vs VC p= 0.004). Iba-1 staining also showed significant differences in the post-injury inflammatory response. Discussion We have shown that axons and activated microglia are co-located in the lesion of the treated cord. We hypothesise the delivery of VEGF/PDGF increases the local vessel permeability to inflammatory cells and activates these along with the resident microglia to threshold population, which ultimately resolved the prolonged inflammation. Here, we have shown that maintaining the inflammatory signals for at least 7 days improved the morphology of the injured cord. Conclusion This study has shown that boosting inflammation, by delivery VEGF/PDGF, in the early phase of SCI helps to reduce secondary degeneration and may promote inflammation resolution. This treatment may provide a platform for other neuro-regenrative therapies.
Resumo:
A bioactive and bioresorbable scaffold fabricated from medical grade poly (epsilon-caprolactone) and incorporating 20% beta-tricalcium phosphate (mPCL–TCP) was recently developed for bone regeneration at load bearing sites. In the present study, we aimed to evaluate bone ingrowth into mPCL–TCP in a large animal model of lumbar interbody fusion. Six pigs underwent a 2-level (L3/4; L5/6) anterior lumbar interbody fusion (ALIF) implanted with mPCL–TCP þ 0.6 mg rhBMP-2 as treatment group while four other pigs implanted with autogenous bone graft served as control. Computed tomographic scanning and histology revealed complete defect bridging in all (100%) specimen from the treatment group as early as 3 months. Histological evidence of continuing bone remodeling and maturation was observed at 6 months. In the control group, only partial bridging was observed at 3 months and only 50% of segments in this group showed complete defect bridging at 6 months. Furthermore, 25% of segments in the control group showed evidence of graft fracture, resorption and pseudoarthrosis. In contrast, no evidence of graft fractures, pseudoarthrosis or foreign body reaction was observed in the treatment group. These results reveal that mPCL–TCP scaffolds could act as bone graft substitutes by providing a suitable environment for bone regeneration in a dynamic load bearing setting such as in a porcine model of interbody spine fusion.