964 resultados para Spinal cord stimulation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bittar CK, Cliquet A Jr, dos Santos Floter M: Utility of quantitative ultrasound of the calcaneus in diagnosing osteoporosis in spinal cord injury patients. Am J Phys Med Rehabil 2011;90:477-481. Objective: The aim of this study was to assess the utility of quantitative ultrasound of the calcaneus in diagnosing osteoporosis in spinal cord injury patients in a Brazilian Teaching Hospital. Design: This is a diagnostic test criterion standard comparison study. Between January 2008 and October 2009, the bone density of 15 spinal cord injury patients was assessed for analysis before beginning rehabilitation using muscle stimulation. The bone density was assessed using bone densitometry examination (DEXA) and ultrasound examination of the calcaneus (QUS). The measurements acquired using QUS and DEXA were compared between patients with spinal cord injury and a control group of ten healthy individuals. Results: The T-score values for femoral neck using DEXA (P < 0.0022) and those using QUS of the calcaneus (P < 0.0005) differed significantly between the groups, and the means in the normal subjects were higher than those in spinal cord injury patients who would receive electrical stimulation. In spinal cord injury patients, the significant differences were found between the QUS T-score for calcaneus and the DEXA scores for the lumbar spine and femoral neck. Conclusions: Because of the low level of mechanical stress on the calcaneus, the results of the QUS could not be correlated with the DEXA results for diagnosing osteoporosis. Therefore, QUS seems to be not a good choice for diagnosis and follow-up.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective To study increases in electromyographic (EMG) response from the right and left rectus femoris muscles of individuals with long-term cervical spinal cord injuries after EMG biofeedback treatment. Design Repeated measure trials compared EMG responses before and after biofeedback treatment in patients with spinal cord injuries. Main outcome measures The Neuroeducator was used to analyse and provide feedback of the EMG signal and to measure EMG response. Setting Department of Traumatic Orthopaedics, School of Medicine, University of Sao Paulo, Brazil. Participants Twenty subjects (three men and 17 women), between 21 and 49 years of age, with incomplete spinal cord injury at level C6 or higher (range C2 to C6). Of these subjects, 10 received their spinal cord injuries from motor vehicle accidents, one from a gunshot, five from diving, three from falls and one from spinal disc herniation. Results Significant differences were found in the EMG response of the right rectus femoris muscle between pre-initial (T1), post-initial (T2) and additional (T3) biofeedback treatment with the subjects in a sitting position [mean (standard deviation) T1: 26 mu V (29); T2: 67 mu V (50); T3: 77 mu V (62)]. The mean differences and 95% confidence intervals for these comparisons were as follows: T1 to T2, -40.7 (-53.1 to -29.4); T2 to T3, -9.6 (-26.1 to 2.3). Similar differences were found for the left leg in a sitting position and for both legs in the sit-to-stand condition. Conclusions The EMG responses obtained in this study showed that treatment involving EMG biofeedback significantly increased voluntary EMG responses from right and left rectus femoris muscles in individuals with spinal cord injuries. (C) 2010 Chartered Society of Physiotherapy. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of the present study was to investigate the role of the spinal cord heme oxygenase (HO)-carbon monoxide (CO)-soluble guanylate cyclase (sGC)-cGMP pathway in nociceptive response of rats to the formalin experimental nociceptive model. Animals were handled and adapted to the experimental environment for a few days before the formalin test was applied. For the formalin test 50 mu l of a 1% formalin solution was injected subcutaneously in the dorsal surface of the right hind paw. Following injections, animals were observed for I h and flinching behavior was measured as the nociceptive response. Thirty min before the test, rats were pretreated with intrathecal injections with the HO inhibitor, zinc deuteroporphyrin 2,4-bis glycol (ZnDPBG) or heme-lysinate, which is known to induce the HO pathway. Control animals were treated with vehicles. We observed a significant increase in nociceptive response of rats treated with ZnDPBG, and a drastic reduction of flinching nociceptive behavioral response in the heme-lysinate treated animals. Furthermore, the HO pathway seems to act via cGMP, since methylene blue (a sGC inhibitor) prevented the reduction of flinching nociceptive behavioral response caused by heme-lysinate. These findings strongly indicate that the HO pathway plays a spinal antinociceptive role during the formalin test, acting via cGMP. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVES AND METHODS: Excitability changes in the primary motor cortex in 17 spinal-cord injured (SCI) patients and 10 controls were studied with paired-pulse transcranial magnetic stimulation. The paired pulses were applied at inter-stimulus intervals (ISI) of 2 ms and 15 ms while motor evoked potentials (MEP) were recorded in the biceps brachii (Bic), the abductor pollicis brevis (APB) and the tibialis anterior (TA) muscles. RESULTS: The study revealed a significant decrease in cortical motor excitability in the first weeks after SCI concerning the representation of both the affected muscles innervated from spinal segments below the lesion, and the spared muscles rostral to the lesion. In the patients with motor-incomplete injury, but not in those with motor-complete injury, the initial cortical inhibition of affected muscles was temporarily reduced 2-3 months following injury. The degree of inhibition in cortical areas representing the spared muscles was observed to be smaller in patients with no voluntary TA activity compared to patients with some activity remaining in the TA. Surprisingly, motor-cortical inhibition was observed not only at ISI 2 ms but also at ISI 15 ms. The inhibition persisted in patients who returned for a follow-up measurement 2-3 years later. CONCLUSION: The present data showed different evaluation of cortical excitability between patients with complete and incomplete spinal cord lesion. Our results provide more insight into the pathophysiology of SCI and contribute to the ongoing discussion about the recovery process and therapy of SCI patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Chronic pain is frequent in persons living with spinal cord injury (SCI). Conventionally, the pain is treated pharmacologically, yet long-term pain medication is often refractory and associated with side effects. Non-pharmacological interventions are frequently advocated, although the benefit and harm profiles of these treatments are not well established, in part because of methodological weaknesses of available studies. OBJECTIVES: To critically appraise and synthesise available research evidence on the effects of non-pharmacological interventions for the treatment of chronic neuropathic and nociceptive pain in people living with SCI. SEARCH METHODS: The search was run on the 1st March 2011. We searched the Cochrane Injuries Group's Specialised Register, the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE (OvidSP), Embase (OvidSP), PsycINFO (OvidSP), four other databases and clinical trials registers. In addition, we manually searched the proceedings of three major scientific conferences on SCI. We updated this search in November 2014 but these results have not yet been incorporated. SELECTION CRITERIA: Randomised controlled trials of any intervention not involving intake of medication or other active substances to treat chronic pain in people with SCI. DATA COLLECTION AND ANALYSIS: Two review authors independently extracted data and assessed risk of bias in the included studies. The primary outcome was any measure of pain intensity or pain relief. Secondary outcomes included adverse events, anxiety, depression and quality of life. When possible, meta-analyses were performed to calculate standardised mean differences for each type of intervention. MAIN RESULTS: We identified 16 trials involving a total of 616 participants. Eight different types of interventions were studied. Eight trials investigated the effects of electrical brain stimulation (transcranial direct current stimulation (tDCS) and cranial electrotherapy stimulation (CES); five trials) or repetitive transcranial magnetic stimulation (rTMS; three trials). Interventions in the remaining studies included exercise programmes (three trials); acupuncture (two trials); self-hypnosis (one trial); transcutaneous electrical nerve stimulation (TENS) (one trial); and a cognitive behavioural programme (one trial). None of the included trials were considered to have low overall risk of bias. Twelve studies had high overall risk of bias, and in four studies risk of bias was unclear. The overall quality of the included studies was weak. Their validity was impaired by methodological weaknesses such as inappropriate choice of control groups. An additional search in November 2014 identified more recent studies that will be included in an update of this review.For tDCS the pooled mean difference between intervention and control groups in pain scores on an 11-point visual analogue scale (VAS) (0-10) was a reduction of -1.90 units (95% confidence interval (CI) -3.48 to -0.33; P value 0.02) in the short term and of -1.87 (95% CI -3.30 to -0.45; P value 0.01) in the mid term. Exercise programmes led to mean reductions in chronic shoulder pain of -1.9 score points for the Short Form (SF)-36 item for pain experience (95% CI -3.4 to -0.4; P value 0.01) and -2.8 pain VAS units (95% CI -3.77 to -1.83; P value < 0.00001); this represented the largest observed treatment effects in the included studies. Trials using rTMS, CES, acupuncture, self-hypnosis, TENS or a cognitive behavioural programme provided no evidence that these interventions reduce chronic pain. Ten trials examined study endpoints other than pain, including anxiety, depression and quality of life, but available data were too scarce for firm conclusions to be drawn. In four trials no side effects were reported with study interventions. Five trials reported transient mild side effects. Overall, a paucity of evidence was found on any serious or long-lasting side effects of the interventions. AUTHORS' CONCLUSIONS: Evidence is insufficient to suggest that non-pharmacological treatments are effective in reducing chronic pain in people living with SCI. The benefits and harms of commonly used non-pharmacological pain treatments should be investigated in randomised controlled trials with adequate sample size and study methodology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of the present study was to identify neurons in the central nervous system that respond to spinal contusion injury in the rat by monitoring the expression of the nuclear protein encoded by the c-fos gene, an activity-dependent gene, in spinal cord and brainstem regions. Rats were anesthetized with urethane and the injury was produced by dropping a 5-g weight from 20.0 cm onto the exposed dura at the T10-L1 vertebral level (contusion group). The spinal cord was exposed but not lesioned in anesthetized control animals (laminectomy group); intact animals were also subjected to anesthesia (intact control). Behavioral alterations were analyzed by Tarlov/Bohlman scores, 2 h after the procedures and the animals were then perfused for immunocytochemistry. The patterns of Fos-like immunoreactivity (FLI) which were site-specific, reproducible and correlated with spinal laminae that respond predominantly to noxious stimulation or injury: laminae I-II (outer substantia gelatinosa) and X and the nucleus of the intermediolateral cell column. At the brain stem level FLI was detected in the reticular formation, area postrema and solitary tract nucleus of lesioned animals. No Fos staining was detected by immunocytochemistry in the intact control group. However, detection of FLI in the group submitted to anesthesia and surgical procedures, although less intense than in the lesion group, indicated that microtraumas may occur which are not detected by the Tarlov/Bohlman scores. There is both a local and remote effect of a distal contusion on the spinal cord of rats, implicating sensory neurons and centers related to autonomic control in the reaction to this kind of injury.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study was to investigate the effects of a 12-week FES-ambulation program on locomotor function and quality of life after incomplete spinal cord injury. Six individuals with incomplete SCI participated in the study. Over-ground walking endurance (6MWT), speed (10MWT), independence (WISCI II) and body-weight support were assessed. Quality of life was assessed via the SF-36, WHOQOL-BREF, Perceived Stress Scale, Center of Epidemiological Studies for Depression scale, and task self-efficacy. Participants experienced significant improvements in walking endurance (223.6±141.5m to 297.3±164.5m; p=0.03), body-weight support (55.3±12.6% to 14.7±23.2%; p= 0.005) and four of the six participants showed improvements on the WISCI II scale (1-4 points). In addition, there was a significant reduction in reported bodily pain (6.5±1.2 to 5.0±1.7; p=0.04). Therefore, FES-ambulation is an effective means for enhancing over-ground locomotor function in individuals with incomplete SCI. It may also be an effective method for reducing pain in individuals with SCI.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Increasing evidence suggests that the basic foundations of the self lie in the brain systems that represent the body. Specific sensorimotor stimulation has been shown to alter the bodily self. However, little is known about how disconnection of the brain from the body affects the phenomenological sense of the body and the self. Spinal cord injury (SCI) patients who exhibit massively reduced somatomotor processes below the lesion in the absence of brain damage are suitable for testing the influence of body signals on two important components of the self-the sense of disembodiment and body ownership. We recruited 30 SCI patients and 16 healthy participants, and evaluated the following parameters: (i) depersonalization symptoms, using the Cambridge Depersonalization Scale (CDS), and (ii) measures of body ownership, as quantified by the rubber hand illusion (RHI) paradigm. We found higher CDS scores in SCI patients, which show increased detachment from their body and internal bodily sensations and decreasing global body ownership with higher lesion level. The RHI paradigm reveals no alterations in the illusory ownership of the hand between SCI patients and controls. Yet, there was no typical proprioceptive drift in SCI patients with intact tactile sensation on the hand, which might be related to cortical reorganization in these patients. These results suggest that disconnection of somatomotor inputs to the brain due to spinal cord lesions resulted in a disturbed sense of an embodied self. Furthermore, plasticity-related cortical changes might influence the dynamics of the bodily self.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spinal cord injury (SCI) leads to severe bone loss in the paralysed limbs and to a resulting increased fracture risk thereof. Since long bone fractures can lead to comorbidities and a reduction in quality of life, it is important to improve bone strength in people with chronic SCI. In this prospective longitudinal cohort study, we investigated whether functional electrical stimulation (FES) induced high-volume cycle training can partially reverse the loss of bone substance in the legs after chronic complete SCI. Eleven participants with motor-sensory complete SCI (mean age 41.9+/-7.5 years; 11.0+/-7.1 years post injury) were recruited. After an initial phase of 14+/-7 weeks of FES muscle conditioning, participants performed on average 3.7+/-0.6 FES-cycling sessions per week, of 58+/-5 min each, over 12 months at each individual's highest power output. Bone and muscle parameters were investigated in the legs by means of peripheral quantitative computed tomography before the muscle conditioning (t1), and after six (t2) and 12 months (t3) of high-volume FES-cycle training. After 12 months of FES-cycling, trabecular and total bone mineral density (BMD) as well as total cross-sectional area in the distal femoral epiphysis increased significantly by 14.4+/-21.1%, 7.0+/-10.8% and 1.2+/-1.5%, respectively. Bone parameters in the femoral shaft showed small but significant decreases, with a reduction of 0.4+/-0.4% in cortical BMD, 1.8+/-3.0% in bone mineral content, and 1.5+/-2.1% in cortical thickness. These decreases mainly occurred between t1 and t2. No significant changes were found in any of the measured bone parameters in the tibia. Muscle CSA at the thigh increased significantly by 35.5+/-18.3%, while fat CSA at the shank decreased by 16.7+/-12.3%. Our results indicate that high-volume FES-cycle training leads to site-specific skeletal changes in the paralysed limbs, with an increase in bone parameters at the actively loaded distal femur but not the passively loaded tibia. Thus, we conclude that high-volume FES-induced cycle training has clinical relevance as it can partially reverse bone loss and thus may reduce fracture risk at this fracture prone site.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: To investigate adaptive changes in bone and muscle parameters in the paralysed limbs after detraining or reduced functional electrical stimulation (FES) induced cycling following high-volume FES-cycling in chronic spinal cord injury. SUBJECTS: Five subjects with motor-sensory complete spinal cord injury (age 38.6 years, lesion duration 11.4 years) were included. Four subjects stopped FES-cycling completely after the training phase whereas one continued reduced FES-cycling (2-3 times/week, for 30 min). METHODS: Bone and muscle parameters were assessed in the legs using peripheral quantitative computed tomography at 6 and 12 months after cessation of high-volume FES-cycling. RESULTS: Gains achieved in the distal femur by high-volume FES-cycling were partly maintained at one year of detraining: 73.0% in trabecular bone mineral density, 63.8% in total bone mineral density, 59.4% in bone mineral content and 22.1% in muscle cross-sectional area in the thigh. The subject who continued reduced FES-cycling maintained 96.2% and 95.0% of the previous gain in total and trabecular bone mineral density, and 98.5% in muscle cross-sectional area. CONCLUSION: Bone and muscle benefits achieved by one year of high-volume FES-cycling are partly preserved after 12 months of detraining, whereas reduced cycling maintains bone and muscle mass gained. This suggests that high-volume FES-cycling has clinical relevance for at least one year after detraining.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND Bodily sensations are an important component of corporeal awareness. Spinal cord injury can leave affected body parts insentient and unmoving, leading to specific disturbances in the mental representation of one's own body and the sense of self. OBJECTIVE Here, we explored how illusions induced by multisensory stimulation influence immediate sensory signals and tactile awareness in patients with spinal cord injuries. METHODS The rubber hand illusion paradigm was applied to 2 patients with chronic and complete spinal cord injury of the sixth cervical spine, with severe somatosensory impairments in 2 of 5 fingers. RESULTS Both patients experienced a strong illusion of ownership of the rubber hand during synchronous, but not asynchronous, stroking. They also, spontaneously reported basic tactile sensations in their previously numb fingers. Tactile awareness from seeing the rubber hand was enhanced by progressively increasing the stimulation duration. CONCLUSIONS Multisensory illusions directly and specifically modulate the reemergence of sensory memories and enhance tactile sensation, despite (or as a result of) prior deafferentation. When sensory inputs are lost, and are later illusorily regained, the brain updates a coherent body image even several years after the body has become permanently unable to feel. This particular example of neural plasticity represents a significant opportunity to strengthen the sense of the self and the feelings of embodiment in patients with spinal cord injury.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mechanisms underlying chronic pain that develops after spinal cord injury (SCI) are incompletely understood. Most research on SCI pain mechanisms has focused on neuronal alterations within pain pathways at spinal and supraspinal levels associated with inflammation and glial activation. These events might also impact central processes of primary sensory neurons, triggering in nociceptors a hyperexcitable state and spontaneous activity (SA) that drive behavioral hypersensitivity and pain. SCI can sensitize peripheral fibers of nociceptors and promote peripheral SA, but whether these effects are driven by extrinsic alterations in surrounding tissue or are intrinsic to the nociceptor, and whether similar SA occurs in nociceptors in vivo are unknown. We show that small DRG neurons from rats (Rattus norvegicus) receiving thoracic spinal injury 3 d to 8 months earlier and recorded 1 d after dissociation exhibit an elevated incidence of SA coupled with soma hyperexcitability compared with untreated and sham-treated groups. SA incidence was greatest in lumbar DRG neurons (57%) and least in cervical neurons (28%), and failed to decline over 8 months. Many sampled SA neurons were capsaicin sensitive and/or bound the nociceptive marker, isolectin B4. This intrinsic SA state was correlated with increased behavioral responsiveness to mechanical and thermal stimulation of sites below and above the injury level. Recordings from C- and Aδ-fibers revealed SCI-induced SA generated in or near the somata of the neurons in vivo. SCI promotes the entry of primary nociceptors into a chronic hyperexcitable-SA state that may provide a useful therapeutic target in some forms of persistent pain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE To evaluate a questionnaire for obtaining owner-perceived, weighted quality-oflife assessments for dogs with spinal cord injuries. DESIGN Evaluation study. Animals-100 dogs with spinal cord injuries and 48 healthy control dogs. PROCEDURES The questionnaire was adapted from a questionnaire (the schedule for the evaluation of individual quality of life-direct weighting) used for human patients. Specifically, owners were asked to identify 5 areas or activities they believed had the most influence on their dogs' quality of life, assess their dogs' current status in each of those areas, and provide a weighting for the importance of each area. Results were used to construct a weighted quality-of-life score ranging from 0 to 100 for each dog. Owners were also asked to provide a quality-of-life score with a visual analog scale (VAS). RESULTS A good correlation was found between weighted and VAS quality-of-life scores. Dogs with spinal cord injuries had weighted quality-of-life scores that were significantly lower than scores for control dogs. Quality-of-life areas and activities provided by owners of dogs with spinal cord injuries were similar to areas and activities provided by owners of healthy control dogs and could mostly be encompassed by 5 broader domains: mobility, play or mental stimulation, health, companionship, and other. CONCLUSIONS AND CLINICAL RELEVANCE Results suggested that the questionnaire could be used to obtain owner-perceived, weighted quality-of-life assessments for dogs with spinal cord injuries. Obtaining owner-perceived quality-of-life assessments for individual dogs should allow veterinarians to better address quality-of-life concerns and expectations of owners.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Changes in metabolism and local circulation occur in the spinal cord during peripheral noxious stimulation. Evidence is presented that this stimulation also causes signal intensity alterations in functional magnetic resonance images of the spinal cord during formalin-induced pain. These results indicate the potential of functional magnetic resonance imaging in assessing noninvasively the extent and intensity of spinal cord excitation in this well characterized pain model. Therefore, the aim of this study was to establish functional magnetic resonance imaging as a noninvasive method to characterize temporal changes in the spinal cord after a single injection of 50 μl of formalin subcutaneously into the hindpaw of the anesthetized rat. This challenge produced a biphasic licking activity in the freely moving conscious animal. Images of the spinal cord were acquired within 2 min, enabling monitoring of the site and the temporal evolution of the signal changes during the development of formalin-induced hyperalgesia without the need of any surgical procedure. The time course of changes in the spinal cord functional image in the isoflurane-anesthetized animal was similar to that obtained from behavioral experiments. Also, comparable physiological data, control experiments, and the inhibition of a response through application of the local anesthetic agent lidocaine indicate that the signal changes observed after formalin injection were specifically related to excitability changes in the relevant segments of the lumbar spinal cord. This approach could be useful to characterize different models of pain and hyperalgesia and, more importantly, to evaluate effects of analgesic drugs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A limited midline myelotomy at T10 can relieve pelvic cancer pain in patients. This observation is explainable in light of strong evidence in support of the existence of a visceral pain pathway that ascends in the dorsal column (DC) of the spinal cord. In rats and monkeys, responses of neurons in the ventral posterolateral thalamic nucleus to noxious colorectal distention are dramatically reduced after a lesion of the DC at T10, but not by interruption of the spinothalamic tract. Blockade of transmission of visceral nociceptive signals through the rat sacral cord by microdialysis administration of morphine or 6-cyano-7-nitroquinoxaline-2,3-dione shows that postsynaptic DC neurons in the sacral cord transmit visceral nociceptive signals to the gracile nucleus. Retrograde tracing studies in rats demonstrate a concentration of postsynaptic DC neurons in the central gray matter of the L6-S1 spinal segments, and anterograde tracing studies show that labeled axons ascend from this region to the gracile nucleus. A similar projection from the midthoracic spinal cord ends in the gracile and cuneate nuclei. Behavioral experiments demonstrate that DC lesions reduce the nocifensive responses produced by noxious stimulation of the pancreas and duodenum, as well as the electrophysiological responses of ventral posterolateral neurons to these stimuli. Repeated regional blood volume measurements were made in the thalamus and other brain structures in anesthetized monkeys in response to colorectal distention by functional MRI. Sham surgery did not reduce the regional blood volume changes, whereas the changes were eliminated by a DC lesion at T10.