57 resultados para Spikelet


Relevância:

10.00% 10.00%

Publicador:

Resumo:

SEPALLATA (SEP) MADS box transcription factors mediate floral development in association with other regulators. Mutants in five rice (Oryza sativa) SEP genes suggest both redundant and unique functions in panicle branching and floret development. LEAFY HULL STERILE1/OsMADS1, from a grass-specific subgroup of LOFSEP genes, is required for specifying a single floret on the spikelet meristem and for floret organ development, but its downstream mechanisms are unknown. Here, key pathways and directly modulated targets of OsMADS1 were deduced from expression analysis after its knockdown and induction in developing florets and by studying its chromatin occupancy at downstream genes. The negative regulation of OsMADS34, another LOFSEP gene, and activation of OsMADS55, a SHORT VEGETATIVE PHASE-like floret meristem identity gene, show its role in facilitating the spikelet-to-floret meristem transition. Direct regulation of other transcription factor genes like OsHB4 (a class III homeodomain Leu zipper member), OsBLH1 (a BEL1-like homeodomain member), OsKANADI2, OsKANADI4, and OsETTIN2 show its role in meristem maintenance, determinacy, and lateral organ development. We found that the OsMADS1 targets OsETTIN1 and OsETTIN2 redundantly ensure carpel differentiation. The multiple effects of OsMADS1 in promoting auxin transport, signaling, and auxin-dependent expression and its direct repression of three cytokinin A-type response regulators show its role in balancing meristem growth, lateral organ differentiation, and determinacy. Overall, we show that OsMADS1 integrates transcriptional and signaling pathways to promote rice floret specification and development.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The genus Glyphochloa (Poaceae: Panicoideae: Andropogoneae: Rottboellinae) is endemic to peninsular India and is distributed on lateritic plateaus of low and high altitude in and around Western Ghats and the Malabar Coast. The genus presumably originated and diversified in the Western Ghats. Species relationships in the genus Glyphochloa were deduced here based on molecular phylogenies inferred using nuclear ribosomal ITS sequences and plastid intergenic spacer regions (atpB-rbcL, trnT-trnL, trnL-trnF), and new observations were made of spikelet morphology, caryopsis morphology and meiotic chromosome counts. We observed two distinct clades of Glyphochloa s.l. One of these (group I') includes Ophiuros bombaiensis, and is characterized by a single-awned lower glume and a base chromosome number of 6; it grows in low elevation coastal areas. The other clade (group II') has a double-awned lower glume, a base chromosome number of 7, and is restricted to higher elevation lateritic plateaus; G. ratnagirica may belong to the group II clade, or may be a third distinct lineage in the genus. A sister-group relationship between group I and II taxa (with or without G. ratnagirica) is not well supported, although the genus is recovered as monophyletic in shortest trees inferred using ITS or concatenated plastid data. We present a key to species of Glyphochloa and make a new combination for O. bombaiensis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

  水稻(Oryza sativa L.) 颖花开裂 (split rice spikelet,SRS) 突变体是从水稻品系 8902s 花药培养得到的双单倍体群体中筛选出的同源异型突变体。以窄叶青8号为母本,SRS突变体为父本配制杂交组合,其F2群体中正常植株和突变植株的分离比例符合3:1,说明颖花突变性状是由单隐性基因决定的。 利用扫描电镜观察 SRS突变体花器官形态发生过程。其性状表现为内外稃变软变长,不抱合,在外稃基部又着生一朵花,两浆片基部融合,质地呈稃片状,雄蕊和雌蕊形态正常,且可育。该突变体的突变性状与拟南芥APETALA1的突变表现相似,说明两者在形态建成方面具有相似之处。由于 SRS 突变体第一轮和第二轮花器官发生了变化,根据 ABC 模型,srs-l基因应属于同源异型 A 组基因。 采用BSA法在F2群体中建立DNA正常池和突变池,利用RAPD技术筛选与突变基因srs-l连锁的分子标记。从520条随机引物中筛选出了引物S465能在两池间扩增出分子量为900 bp的差异片段,并证明其在F2群体中表现共分离。将此DNA片段克隆后作为RFLP探针pS465A,该探针与srs-l基因紧密连锁,在DH群体的RFLP分子连锁图谱上成功地将它们定位于第三染色体上。 本研究是利用水稻同源异型突变体为材料,研究水稻花器官发育基因的首例报道。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Anther extrusion has been widely discussed as a factor influencing fusarium head blight (FHB) resistance in wheat. This is despite a paucity of quantitative information on its importance, between cultivars, in contrast to that for heading date and plant height. We describe a method applicable to a plant breeding
situation at 10 days postanthesis, for assessing the distinct characteristics of anther retention (anthers held within the spikelet) and trapped anthers (partially
extruded and trapped between the lemma and palea of the wheat spikelet). FHB resistance was tested in field experiments in 2004 and 2005. In these experiments designed to resemble applications to a plant breeding selection scheme anther retention was significantly correlated with FHB in 2004 (r = 0.26; P < 0.05) and 2005 (r = 0.26; P < 0.05). A higher proportion of anthers retained relating, albeit weakly, with increased FHB susceptibility in European wheat.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rice is a major source of inorganic arsenic (iAs) in the human diet because paddy rice. efficient at accumulating As Rice As speciation is dominated by iAs and dimethylarsinic acid (DMA). Here we review the global pattern in rice As speciation and the factors causing the variation. Rice produced in Asia shows a strong linear relationship between iAs and total As concentration with a slope of 0.78. Rice produced in Europe and the United States shows a more variable, but generally hyperbolic relationship with DMA being predominant in U.S. rice. Although there is significant genotypic variation in grain As speciation, the regional Variations are primarily attributed to environmental factors. Emerging evidence also indicates that methylated. As species in rice are derived from the soil, while rice plants lack the As methylation ability. Soil flooding and additions of organic matter increase microbial methylation of As, although the microbial community responsible for methylafion is poorly understood. Compared with iAs, methylated As species are taken up by rice roots less efficiently but are transported to the grain much, more efficiently, which may be an important factor responsible for the spikelet sterility disorder (straight head disease) in rice. DMA is a weak carcinogen, but the level of ingestion from rice consumption is much lower than that of concern. Questions that require further investigations are identified.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wheat as the major cereal crop in Egypt is the core of the government's food security policy. But there are rapid losses of the genetic resources of the country as a result of ongoing modernization and development. Thus we compiled the largest possible number of Egyptian accessions preserved in the world gene banks. In the present study we collected nearly 1000 Egyptian wheat accessions. A part from the Triticum species of the Egyptian flora four species have been found, which were recorded for the first time T. turanicum, T. compactum, T. polonicum and T. aethiopicum. To classify the Egyptian wheat species using morphological studies, 108 accessions were selected. Thereafter, these accessions were cultivated and evaluated morphologically to confirm the validity of the classified species. During the morphological evaluation study, a new case was noticed for the number of glumes in one of the Egyptian wheat accessions. Three glumes per spikelet were observed in a branched spike. This led us to assess the phenomenon in all varieties with branching spikes within the genus Triticum. All varieties which have branching spikes at least in some spikletes have three glumes. We considered the case of the third glume as indicator for the domestication syndrome. Also, a new case of other forms of branching in the genus Triticum was investigated, which was a compromise between true and false-branching. We called it true-false branching. Comparative anatomical studies were carried out between Egyptian Triticum species to investigate the possibility of using anatomical features to classify the Egyptian wheat species. It was concluded that it is difficult to use anatomical features alone to differentiate between two Triticum species, especially when they belong to the same ploidy level. A key for the identification of Egyptian Triticum taxa was established.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Seed set of rice (Oryza sativa L.) is highly sensitive to short episodes of high temperature at anthesis events that are likely to be more frequent in future climates. Breeding for tolerance is therefore an essential component of adaptation to climate variability and change. Experiments were conducted in 2003 and 2004 at optimum (30 degrees C daytime) and high (35 and 38 degrees C) air temperature using parents of some prominent mapping populations (i) to determine whether there were differences in the daily flowering pattern and hence a potential heat avoidance mechanism, and (ii) to identify rice genotypes having true heat tolerance during anthesis, that is, high seed set in spikelets exposed to high temperature. Rice cultivar CG14 (O. glaberrima) reached peak anthesis earlier in the morning (1.5 h after dawn) under both control (30 degrees C) and high (38 degrees C) temperature conditions than O. sativa genotypes (>= 3 h after dawn). Exposure to high temperature (centered on the time of peak anthesis) for 6 h reduced spikelet fertility more than exposure for 2 h, and fertility was lower at 38 degrees C than at 35 degrees C. Genotypic ranking for spikelet fertility at 35 and 38 degrees C was highly correlated in both 2003 and 2004. Fertility was also highly correlated across years, suggesting a consistent and reproducible response of spikelet fertility to temperature. The check cultivar N22 was the most heat tolerant genotype (64-86% fertility at 38 degrees C) and cultivars Azucena and Moroberekan the most susceptible (<8%).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Four experiments conducted over three seasons (2002-05) at the Crops Research Unit, University of Reading, investigated effects of canopy management of autumn sown oilseed rape (Brassica napus L. ssp. oleifera var. biennis (DC.) Metzg.) on competition with grass weeds. Emphasis was placed on the effect of the crop on the weeds. Rape canopy size was manipulated using sowing date, seed rate and the application of autumn fertilizer. Lolium multiflorum Lam., L. x boucheanum Kunth and Alopecurus myosuroides Huds. were sown as indicative grass weeds. The effects of sowing date, seed rate and autumn nitrogen on crop competitive ability were correlated with rape biomass and fractional interception of photosynthetically active radiation (PAR) by the rape floral layer, to the extent that by spring there was good evidence of crop: weed replacement. An increase in seed rate up to the highest plant densities tested increased both rape biomass and competitiveness, e.g. in 2002/3, L. multiflorum head density was reduced from 539 to 245 heads/m(2) and spikelet density from 13 170 to 5960 spikelets/m(2) when rape plant density was increased from 16 to 81 plants/m(2). Spikelets/head of Lolium spp. was little affected by rape seed rate, but the length of heads of A. myosuroides was reduced by 9 % when plant density was increased from 29-51 plants/m(2). Autumn nitrogen increased rape biomass and reduced L. multiflorum head density (415 and 336 heads/m(2) without and with autumn nitrogen, respectively) and spikelet density (9990 and 8220 spikelets/m(2) without and with autumn nitrogen, respectively). The number of spikelets/head was not significantly affected by autumn nitrogen. Early sowing could increase biomass and competitiveness, but poor crop establishment sometimes overrode the effect. Where crop and weed establishment was similar for both sowing dates, a 2-week delay (i.e. early September to mid-September) increased L. multiflorum head density from 226 to 633 heads/m(2) and spikelet density from 5780 to 15 060 spikelets/m(2).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Three experiments conducted over two years (2002-04) at the Crops Research Unit, University of Reading, investigated competition between autumn sown oilseed rape cultivars (Brassica napus L. ssp. oleifera var. biennis (DC.) Metzg.) and Lolium multiflorum Lam., L. x boucheanum Kunth and Alopecurus myosuroides Huds., sown as indicative grass weeds. Rape cultivar (cv.) had a substantial effect on grass weed seed return. Over the six cultivars tested, L. multiflorum spikelet production ranged from just under 400 spikelets/m(2) in the presence of cv. Winner to nearly 5800 in competition with cv. Lutin. Cultivar competitiveness was associated with high biomass, large dense floral layers and early stem extension. There was some evidence of differential competitive tolerance between rape cultivars. The results suggested that rape cultivars could be screened for competitiveness by measuring floral layer interception of photosynthetic active radiation. L. x boucheanum cultivars varied in ability to compete with rape. In the absence of inter-specific competition, spikelet density was similar for Aberecho and Polly (circa 31000 spikelets/m(2)) but when grown with rape Polly outyielded Aberecho (i.e. 12 090 and 7990 spikelets/m(2) respectively).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Four experiments conducted over three seasons (2002–05) at the Crops Research Unit, University of Reading, investigated effects of canopy management of autumn sown oilseed rape (Brassica napus L. ssp. oleifera var. biennis (DC.) Metzg.) on competition with grass weeds. Emphasis was placed on the effect of the crop on the weeds. Rape canopy size was manipulated using sowing date, seed rate and the application of autumn fertilizer. Lolium multiflorum Lam., L.rboucheanum Kunth and Alopecurus myosuroides Huds. were sown as indicative grass weeds. The effects of sowing date, seed rate and autumn nitrogen on crop competitive ability were correlated with rape biomass and fractional interception of photosynthetically active radiation (PAR) by the rape floral layer, to the extent that by spring there was good evidence of crop: weed replacement. An increase in seed rate up to the highest plant densities tested increased both rape biomass and competitiveness, e.g. in 2002/3, L. multiflorum head density was reduced from 539 to 245 heads/m2 and spikelet density from 13 170 to 5960 spikelets/m2 when rape plant density was increased from 16 to 81 plants/m2. Spikelets/head of Lolium spp. was little affected by rape seed rate, but the length of heads of A. myosuroides was reduced by 9%when plant density was increased from 29–51 plants/m2. Autumn nitrogen increased rape biomass and reduced L. multiflorum head density (415 and 336 heads/m2 without and with autumn nitrogen, respectively) and spikelet density (9990 and 8220 spikelets/m2 without and with autumn nitrogen, respectively). The number of spikelets/head was not significantly affected by autumn nitrogen. Early sowing could increase biomass and competitiveness, but poor crop establishment sometimes overrode the effect. Where crop and weed establishment was similar for both sowing dates, a 2-week delay (i.e. early September to mid-September) increased L. multiflorum head density from 226 to 633 heads/m2 and spikelet density from 5780 to 15 060 spikelets/m2.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Four experiments conducted over three seasons (2002-05) at the Crops Research Unit, University of Reading, investigated effects of canopy management of autumn sown oilseed rape (Brassica napus L. ssp. oleifera var. biennis (DC.) Metzg.) on competition with grass weeds. Emphasis was placed on the effect of the crop on the weeds. Rape canopy size was manipulated using sowing date, seed rate and the application of autumn fertilizer. Lolium multiflorum Lam., L. x boucheanum Kunth and Alopecurus myosuroides Huds. were sown as indicative grass weeds. The effects of sowing date, seed rate and autumn nitrogen on crop competitive ability were correlated with rape biomass and fractional interception of photosynthetically active radiation (PAR) by the rape floral layer, to the extent that by spring there was good evidence of crop: weed replacement. An increase in seed rate up to the highest plant densities tested increased both rape biomass and competitiveness, e.g. in 2002/3, L. multiflorum head density was reduced from 539 to 245 heads/m(2) and spikelet density from 13 170 to 5960 spikelets/m(2) when rape plant density was increased from 16 to 81 plants/m(2). Spikelets/head of Lolium spp. was little affected by rape seed rate, but the length of heads of A. myosuroides was reduced by 9 % when plant density was increased from 29-51 plants/m(2). Autumn nitrogen increased rape biomass and reduced L. multiflorum head density (415 and 336 heads/m(2) without and with autumn nitrogen, respectively) and spikelet density (9990 and 8220 spikelets/m(2) without and with autumn nitrogen, respectively). The number of spikelets/head was not significantly affected by autumn nitrogen. Early sowing could increase biomass and competitiveness, but poor crop establishment sometimes overrode the effect. Where crop and weed establishment was similar for both sowing dates, a 2-week delay (i.e. early September to mid-September) increased L. multiflorum head density from 226 to 633 heads/m(2) and spikelet density from 5780 to 15 060 spikelets/m(2).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Three experiments conducted over two years (2002-04) at the Crops Research Unit, University of Reading, investigated competition between autumn sown oilseed rape cultivars (Brassica napus L. ssp. oleifera var. biennis (DC.) Metzg.) and Lolium multiflorum Lam., L. x boucheanum Kunth and Alopecurus myosuroides Huds., sown as indicative grass weeds. Rape cultivar (cv.) had a substantial effect on grass weed seed return. Over the six cultivars tested, L. multiflorum spikelet production ranged from just under 400 spikelets/m(2) in the presence of cv. Winner to nearly 5800 in competition with cv. Lutin. Cultivar competitiveness was associated with high biomass, large dense floral layers and early stem extension. There was some evidence of differential competitive tolerance between rape cultivars. The results suggested that rape cultivars could be screened for competitiveness by measuring floral layer interception of photosynthetic active radiation. L. x boucheanum cultivars varied in ability to compete with rape. In the absence of inter-specific competition, spikelet density was similar for Aberecho and Polly (circa 31000 spikelets/m(2)) but when grown with rape Polly outyielded Aberecho (i.e. 12 090 and 7990 spikelets/m(2) respectively).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Episodes of high temperature at anthesis, which in rice is the most sensitive stage to temperature, are expected to occur more frequently in future climates. The morphology of the reproductive organs and pollen number, and changes in anther protein expression, were studied in response to high temperature at anthesis in three rice (Oryza sativa L.) genotypes. Plants were exposed to 6 h of high (38 °C) and control (29 °C) temperature at anthesis and spikelets collected for morphological and proteomic analysis. Moroberekan was the most heat-sensitive genotype (18% spikelet fertility at 38 °C), while IR64 (48%) and N22 (71%) were moderately and highly heat tolerant, respectively. There were significant differences among the genotypes in anther length and width, apical and basal pore lengths, apical pore area, and stigma and pistil length. Temperature also affected some of these traits, increasing anther pore size and reducing stigma length. Nonetheless, variation in the number of pollen on the stigma could not be related to measured morphological traits. Variation in spikelet fertility was highly correlated (r=0.97, n=6) with the proportion of spikelets with ≥20 germinated pollen grains on the stigma. A 2D-gel electrophoresis showed 46 protein spots changing in abundance, of which 13 differentially expressed protein spots were analysed by MS/MALDI-TOF. A cold and a heat shock protein were found significantly up-regulated in N22, and this may have contributed to the greater heat tolerance of N22. The role of differentially expressed proteins and morphology during anther dehiscence and pollination in shaping heat tolerance and susceptibility is discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Genetic analysis of heat tolerance will help breeders produce rice (Oryza sativa L.) varieties adapted to future climates. An F6 population of 181 recombinant inbred lines of Bala (tolerant) × Azucena (susceptible) was screened for heat tolerance at anthesis by measuring spikelet fertility at 30°C (control) and 38°C (high temperature) in experiments conducted in the Philippines and the United Kingdom. The parents varied significantly for absolute spikelet fertility under control (79–87%) and at high temperature (2.9–47.1%), and for relative spikelet fertility (high temperature/control) at high temperature (3.7–54.9%). There was no correlation between spikelet fertility in control and high-temperature conditions and no common quantitative trait loci (QTLs) were identified. Two QTLs for spikelet fertility under control conditions were identified on chromosomes 2 and 4. Eight QTLs for spikelet fertility under high-temperature conditions were identified on chromosomes 1, 2, 3, 8, 10, and 11. The most significant heat-responsive QTL, contributed by Bala and explaining up to 18% of the phenotypic variation, was identified on chromosome 1 (38.35 mega base pairs on the rice physical genome map). This QTL was also found to influence plant height, explaining 36.6% of the phenotypic variation. A comparison with other studies of abiotic (drought, cold, salinity) stresses showed QTLs at similar positions on chromosomes 1, 3, 8, and 10, suggesting common underlying stress-responsive regions of the genome.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hybrid vigour may help overcome the negative effects of climate change in rice. A popular rice hybrid (IR75217H), a heat-tolerant check (N22), and a mega-variety (IR64) were tested for tolerance of seed-set and grain quality to high-temperature stress at anthesis at ambient and elevated [CO2]. Under an ambient air temperature of 29 °C (tissue temperature 28.3 °C), elevated [CO2] increased vegetative and reproductive growth, including seed yield in all three genotypes. Seed-set was reduced by high temperature in all three genotypes, with the hybrid and IR64 equally affected and twice as sensitive as the tolerant cultivar N22. No interaction occurred between temperature and [CO2] for seed-set. The hybrid had significantly more anthesed spikelets at all temperatures than IR64 and at 29 °C this resulted in a large yield advantage. At 35 °C (tissue temperature 32.9 °C) the hybrid had a higher seed yield than IR64 due to the higher spikelet number, but at 38 °C (tissue temperature 34–35 °C) there was no yield advantage. Grain gel consistency in the hybrid and IR64 was reduced by high temperatures only at elevated [CO2], while the percentage of broken grains increased from 10% at 29 °C to 35% at 38 °C in the hybrid. It is concluded that seed-set of hybrids is susceptible to short episodes of high temperature during anthesis, but that at intermediate tissue temperatures of 32.9 °C higher spikelet number (yield potential) of the hybrid can compensate to some extent. If the heat tolerance from N22 or other tolerant donors could be transferred into hybrids, yield could be maintained under the higher temperatures predicted with climate change.