943 resultados para Specific combining ability
Resumo:
Pós-graduação em Agronomia - FEIS
Resumo:
Pós-graduação em Agronomia (Agricultura) - FCA
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The general combining ability (GCA), specific combining ability (SCA), and heterosis were studied in a complete diallel cross among fresh market tomato breeding lines with reciprocal excluded. Fifteen genotypes (five parents and ten hybrids) were tested using a randomized complete block design, with three replications, and the experiments were conducted in Itatiba, São Paulo state, Brazil, in 2005/06. The yield components evaluated were fruit yield per plant (FP), fruit number per plant (FN), average fruit weight (FW); cluster number per plant (CN); fruit number per cluster (FC), fruit wall thickness (FT) and number of locules per fruit (NL). Fruit quality components evaluated were total soluble solids (SS); total titratable acidity (TA); SS/TA ratio, fruit length (FL); fruit width (WI); length to width ratio (FL/WI). The data for each trait was first subjected to analysis of variance. Griffing's method 2, model 1 was employed to estimate the general (GCA) and specific (SCA) combining abilities. Parental and hybrid data for each trait were used to estimate of mid-parent heterosis. For plant fruit yield, IAC-2 was the best parental line with the highest GCA followed by IAC-4 and IAC-1 lines. The hybrids IAC-1 x IAC-2, IAC-1 x IAC-4 and IAC-2 x IAC-4 showed the highest effects of SCA. High heterotic responses were found for fruit yield and plant fruit number with values up to 49.72% and 47.19%, respectively. The best hybrids for fruit yield and plant fruit number were IAC-1 x IAC-2, IAC-1 x IAC-4 and IAC-2 x IAC-5, for fruit yield and plant fruit number, the main yield components.
Resumo:
The inheritance of resistance to root-lesion nematode was investigated in five synthetic hexaploid wheat lines and two bread wheat lines using a half-diallel design of F-1 and F-2 crosses. The combining ability of resistance genes in the synthetic hexaploid wheat lines was compared with the performance of the bread wheat line 'GS50a', the source of resistance to Pratylenchus thornei used in Australian wheat breeding programmes. Replicated glasshouse trials identified P. thornei resistance as polygenic and additive in gene action. General combining ability (GCA) of the parents was more important than specific combining ability (SCA) effects in the inheritance of P. thornei resistance in both F-1 and F-2 populations. The synthetic hexaploid wheat line 'CPI133872' was identified as the best general combiner, however, all five synthetic hexaploid wheat lines possessed better GCA than 'GS50a'. The synthetic hexaploid wheat lines contain novel sources of P. thornei resistance that will provide alternative and more effective sources of resistance to be utilized in wheat breeding programmes.
Resumo:
The effect of interspecific heterosis in crosses between Medicago sativa subsp. sativa and M. sativa subsp. falcata was assessed. Three sativa and 3 falcata plants were crossed in a diallel design. Progeny dry matter yield and natural plant height were assessed in a replicated field experiment at Gatton, Queensland. Yield data were analysed using the method of residual maximum likelihood (REML) and Griffing's model 1. There were significant differences between the reciprocal, general combining ability (GCA), and specific combining ability (SCA) effects. As expected, S-1 populations were lower yielding than their respective intraspecific cross and falcata x falcata crosses were significantly lower yielding than sativa x sativa crosses. Some of the interspecific crosses indicated substantial SCA effects, yielding at least as well as the best sativa x sativa crosses. We have demonstrated the potential usefulness of unselected M. sativa subsp. falcata as a heterotic group in the improvement of yield in northern Australian adapted lucerne material, and discuss how it could be incorporated into future breeding to overcome the yield stagnation currently being experienced in Australian programs.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Root-lesion nematodes (Pratylenchus thornei Sher and Allen and P. neglectus (Rensch) Filipijev and Schuurmans Stekhoven) cause substantial yield loss to wheat crops in the northern grain region of Australia. Resistance to P. thornei for use in wheat breeding programs was sought among synthetic hexaploid wheats (2n= 6x = 42, AABBDD) produced through hybridisations of Triticum turgidum L. subsp. durum (Desf.) Husn (2n= 4x = 28, AABB) with Aegilops tauschii Coss. (2n= 2x = 14, DD). Resistance was determined for the synthetic hexaploid wheats and their durum and Ae. tauschii parents from the numbers of nematodes in the roots of plants grown for 16 weeks in pots of pasteurised soil inoculated with P. thornei. Fifty-nine (32%) of 186 accessions of synthetic hexaploid wheats had lower numbers of nematodes than Gatcher Selection 50a (GS50a), a partially resistant bread wheat. Greater frequencies of partial resistance were present in the durum parents (72% of 39 lines having lower nematode numbers than GS50a) and in the Ae. tauschii parents (55% of 53 lines). The 59 synthetic hexaploids were re-tested in a second experiment along with their parents. In a third experiment, 11 resistant synthetic hexaploid wheats and their F-1 hybrids with Janz, a susceptible bread wheat, were tested and the F(1)s were found to give nematode counts intermediate between the respective two parents. Synthetic hexaploid wheats with higher levels of resistance resulted from hybridisations where both the durum and Ae. tauschii parents were partially resistant, rather than where only one parent was partially resistant. These results suggest that resistance to P. thornei in synthetic hexaploid wheats is polygenic, with resistances located both in the D genome from Ae. tauschii and in the A and/or B genomes from durum. Five synthetic hexaploid wheats were selected for further study on the basis of (1) a high level of resistance to P. thornei of the synthetic hexaploid wheats and of both their durum and Ae. tauschii parents, (2) being representative of both Australian and CIMMYT (International Maize and Wheat Improvement Centre) durums, and (3) being representative of the morphological subspecies and varieties of Ae. tauschii. These 5 synthetic hexaploid wheats were also shown to be resistant to P. neglectus, whereas GS50a and 2 P. thornei-resistant derivatives were quite susceptible. Results of P. thornei resistance of F(1)s and F(2)s from a half diallel of these 5 synthetic hexaploid wheats, GS50a, and Janz from another study indicate polygenic additive resistance and better general combining ability for the synthetic hexaploid wheats than for GS50a. Published molecular marker studies on a doubled haploid population between the synthetic hexaploid wheat with best general combining ability (CPI133872) and Janz have shown quantitative trait loci for resistance located in all 3 genomes. Synthetic hexaploid wheats offer a convenient way of introgressing new resistances to P. thornei and P. neglectus from both durum and Ae. tauschii into commercial bread wheats.
Resumo:
This report presents the process and outcomes of a five year project, which employed genetics and breeding approach for integrating disease resistance,agronomy and quality traits that enhances sustainable productivity improvement in sweet corn production. The report outlines a molecular markers based approach to introgress quantitative traits loci that are believed to contribute to resistance to downy mildew, a potentially devastating disease that threatens sweet corn and other similar crops. It also details the approach followed to integrate resistances for other major diseases such as southern rust (caused by Puccinia polysora Underw), Northern Corn Leaf Blight (Exserohilum turcicum) with improved agronomy and eating quality. The report explains the importance of heterosis (hybrid vigour) and combining ability in the development of useful sweet corn hybrids. It also explains the relevance of parental performance to predict its breeding value and the performance of its hybrids.
Resumo:
The main chlorophyll a/b light-harvesting complex (LHC 11) has been isolated directly from thylakoid membranes of marine green alga (Bryopsis corticulans Setch.) by two consecutive runs of anion exchange and gel-filtration chromatography. LHC 11 proteins in the membrane extracts treated with 3% n-Octyl-b-D-glucopyranoside (OG) obtained specific binding ability on Q Sepharose column, and thus were isolated from the thylakoid membranes in a highly selective fraction. The monomeric, trimeric and oligomeric subcomplexes of LHC 11 have been obtained by fractionation of the LHC 11 mixes with sucrose density gradient ultracentrifugation. The SDS-PAGE analysis of peptide composition and absorption spectrum showed that LHC 11 monomers, trimers and oligomers prepared through this work were intact and in high purity. Our report is the first to show that it is possible to purify LHC If directly from thylakoid membranes without extensively biochemical purification.
Resumo:
The administration of recombinant methionyl bovine somatotropin (rMbST) to dairy cows to increase milk yield remains a common practice in many countries including the USA, Brazil, Mexico, South Africa and Korea, whereas it has been forbidden within the European Union (EU) since 1999. A rapid screening immunoanalytical method capable of the unequivocal determination of rMbST in milk would be highly desirable in order to effectively monitor compliance with the EU-wide ban for home-made or imported dairy products. For decades, the production of specific antibodies for this recombinant isoform of bovine somatotropin (bST) has remained elusive, due to the high degree of sequence homology between both counterparts (e.g. methionine for rMbST in substitution of alanine in bST at the N-terminus). In this study, we compared several immunizing strategies for the production of specific polyclonal antibodies (pAbs), based on the use of the full-length recombinant protein, an rMbST N-terminus peptide fragment and a multiple antigen peptide (MAP) which consists of an oligomeric branching lysine core attached to the first two N-terminus amino acids of rMbST, methionine and phenylalanine (MF-MAP). The immunization with KLH-conjugated MF-MAP led to the production of the pAb with the highest rMbST/bST recognition ratio amongst the generated battery of antibodies. The pAb exhibited a specific binding ability to rMbST in a competitive antigen-coated ELISA format, which avidity was further improved after purification by rMbST N-terminus peptide-based affinity chromatography. These results suggest that immunodiscrimination between structurally related proteins can be achieved using immuno-enhanced immunogens such as MAPs. © 2012 Elsevier B.V.
Resumo:
In this paper we show that heritage speakers and returnees are fundamentally different from the majority of adult second language learners with respect to their use of collocations (Laufer & Waldman, 2011). We compare the use of lexical collocations involving yap- “do” and et- “do” among heritage speakers of Turkish in Germany (n = 45) with those found among Turkish returnees (n = 65) and Turkish monolinguals (n = 69). Language use by returnees is an understudied resource although this group can provide crucial insights into the specific language ability of heritage speakers. Results show that returnees who had been back for one year avoid collocations with yap- and use some hypercorrect forms in et-, whilst returnees who had been back for seven years at the time of recording produce collocations that are quantitatively and qualitatively similar to those of monolingual speakers of Turkish. We discuss implications for theories of ultimate attainment and incomplete acquisition in heritage speakers.
Resumo:
In this paper we show that heritage speakers and returnees are fundamentally different from the majority of adult second language learners with respect to their use of collocations (Laufer & Waldman, 2011). We compare the use of lexical collocations involving yap- “do” and et- “do” among heritage speakers of Turkish in Germany (n=45) with those found among Turkish returnees (n=65) and Turkish monolinguals (n=69). Language use by returnees is an understudied resource although this group can provide crucial insights into the specific language ability of heritage speakers. Results show that returnees who had been back for one year avoid collocations with yap- and use some hypercorrect forms in et-, whilst returnees who had been back for seven years upon recording produce collocations that are quantitatively and qualitatively similar to those of monolingual speakers of Turkish. We discuss implications for theories of ultimate attainment and incomplete acquisition in heritage speakers.
Resumo:
In this paper we show that heritage speakers and returnees are fundamentally different from the majority of adult second language learners with respect to their use of collocations (Laufer & Waldman, 2011). We compare the use of lexical collocations involving yap- “do” and et- “do” among heritage speakers of Turkish in Germany (n=45) with those found among Turkish returnees (n=65) and Turkish monolinguals (n=69). Language use by returnees is an understudied resource although this group can provide crucial insights into the specific language ability of heritage speakers. Results show that returnees who had been back for one year avoid collocations with yap- and use some hypercorrect forms in et-, whilst returnees who had been back for seven years upon recording produce collocations that are quantitatively and qualitatively similar to those of monolingual speakers of Turkish. We discuss implications for theories of ultimate attainment and incomplete acquisition in heritage speakers.