923 resultados para Species turn-over


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The excreted/secreted proteinases of adult and juvenile Fasciola hepatica maintained in vitro were found to hydrolyse the fluorogenic substrates Cbz-Phe-Arg- and Cbz-Arg-Arg-NHMec. This activity was demonstrated to have a classical cysteine proteinase inhibitor profile, with turn-over of both substrates being blocked by pre-incubation with E64 and peptidyl diazomethanes. The Cbz-Arg-Arg-NHMec hydrolysing activity of the mature fluke exhibited an alkaline stability not characteristic of its mammalian lysosomal counterparts. Further, the biotinylated affinity reagents biotin-Phe-Ala CHN2 and biotin-Phe-Cys(SBzyl)-CHN2 were used to label and characterize these cysteine proteinases in terms of apparent molecular weight and subsite specificity. Adult fluke media were found to contain four species of molecular weights 66, 58, 50 and 25-26 kDa; juvenile media contained three species of molecular weights 66, 54 and 25-26 kDa. The major 25-26 kDa cysteine proteinase common to both stages was shown to have a subsite specificity similar to that of mammalian cathepsin B.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Recent studies predict elevated and accelerating rates of species extinctions over the 21st century, due to climate change and habitat loss. Considering that such primary species loss may initiate cascades of secondary extinctions and push systems towards critical tipping points, we urgently need to increase our understanding of if certain sequences of species extinctions can be expected to be more devastating than others Most theoretical studies addressing this question have used a topological (non-dynamical) approach to analyse the probability that food webs will collapse, below a fixed threshold value in species richness, when subjected to different sequences of species loss. Typically, these studies have neither considered the possibility of dynamical responses of species, nor that conclusions may depend on the value of the collapse threshold. Here we analyse how sensitive conclusions on the importance of different species are to the threshold value of food web collapse. Using dynamical simulations, where we expose model food webs to a range of extinction sequences, we evaluate the reliability of the most frequently used index, R<inf>50</inf>, as a measure of food web robustness. In general, we find that R<inf>50</inf> is a reliable measure and that identification of destructive deletion sequences is fairly robust, within a moderate range of collapse thresholds. At the same time, however, focusing on R<inf>50</inf> only hides a lot of interesting information on the disassembly process and can, in some cases, lead to incorrect conclusions on the relative importance of species in food webs.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Dissertação de mestrado, Biologia Marinha, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2015

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Tese de doutoramento, Ciências Biomédicas (Microbiologia e Parasitologia), Universidade de Lisboa, Faculdade de Medicina, 2015

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Zeolite Y-encapsulated ruthenium(III) complexes of Schiff bases derived from 3-hydroxyquinoxaline-2-carboxaldehyde and 1,2- phenylenediamine, 2-aminophenol, or 2-aminobenzimidazole (RuYqpd, RuYqap and RuYqab, respectively) and the Schiff bases derived from salicylaldehyde and 1,2-phenylenediamine, 2-aminophenol, or 2-aminobenzimidazole (RuYsalpd, RuYsalap and RuYsalab, respectively) have been prepared and characterized. These complexes, except RuYqpd, catalyze catechol oxidation by H2O2 selectively to 1,2,4-trihydroxybenzene. RuYqpd is inactive. A comparative study of the initial rates and percentage conversion of the reaction was done in all cases. Turn over frequency of the catalysts was also calculated. The catalytic activity of the complexes is in the order RuYqap > RuYqab for quinoxaline-based complexes and RuYsalap > RuYsalpd > RuYsalab for salicylidene-based complexes. The reaction is believed to proceed through the formation of a Ru(V) species.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The arthropod species richness of pastures in three Azorean islands was used to examine the relationship between local and regional species richness over two years. Two groups of arthropods, spiders and sucking insects, representing two functionally different but common groups of pasture invertebrates were investigated. The local-regional species richness relationship was assessed over relatively fine scales: quadrats (= local scale) and within pastures (= regional scale). Mean plot species richness was used as a measure of local species richness (= alpha diversity) and regional species richness was estimated at the pasture level (= gamma diversity) with the 'first-order-Jackknife' estimator. Three related issues were addressed: (i) the role of estimated regional species richness and variables operating at the local scale (vegetation structure and diversity) in determining local species richness; (ii) quantification of the relative contributions of alpha and beta diversity to regional diversity using additive partitioning; and (iii) the occurrence of consistent patterns in different years by analysing independently between-year data. Species assemblages of spiders were saturated at the local scale (similar local species richness and increasing beta-diversity in richer regions) and were more dependent on vegetational structure than regional species richness. Sucking insect herbivores, by contrast, exhibited a linear relationship between local and regional species richness, consistent with the proportional sampling model. The patterns were consistent between years. These results imply that for spiders local processes are important, with assemblages in a particular patch being constrained by habitat structure. In contrast, for sucking insects, local processes may be insignificant in structuring communities.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In Britain, managed grass lawns provide the most traditional and widespread of garden and landscape practices in use today. Grass lawns are coming under increasing challenge as they tend to support a low level of biodiversity and can require substantial additional inputs to maintain. Here we apply a novel approach to the traditional monocultural lawnscape by replacing grasses entirely with clonal perennial forbs. We monitored changes in plant coverage and species composition over a two year period and here we report the results of a study comparing plant origin native, non-native and mixed) and mowing regime. This allows us to assess the viability of this construct as an alternative to traditional grass lawns. Grass-free lawns provided a similar level of plant cover to grass lawns. Both the mowing regime and the combination of species used affected this outcome, with native plant species seen to have the highest survival rates, and mowing at 4cm to produce the greatest amount of ground coverage and plant species diversity within grass-free lawns. Grass-free lawns required over 50% less mowing than a traditionally managed grass lawn. Observations suggest that plant forms that exhibited: a) a relatively fast growth rate, b) a relatively large individual leaf area, and c) an average leaf height substantially above the cut to be applied, were unsuitable for use in grass-free lawns. With an equivalent level of ground coverage to grass lawns, increased plant diversity and a reduced need for mowing, the grass-free lawn can be seen as a species diverse, lower input and potentially highly ornamental alternative to the traditional lawn format.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Cyclamen graecum is a well-defined evolutionary unit that separated from other Cyclamen species about 10 million years ago (Yesson & Culham 2006; Yesson, Toomey & Culham, 2009). It is genetically isolated and there are no records of it hybridizing naturally with other species. However, over that time it has begun to form separate populations that themselves might later become species. The split between C. graecum subsp. graecum and C. graecum subsp. anatolicum, at 2.9-3.4mya, is older than the average speciation age of 2.3my for the genus Cyclamen (Yesson, Toomey & Culham, 2009), so it would be entirely consistent to treat C. graecum subsp. anatolicum as a species rather than a subspecies. Hildebrand’s name Cyclamen maritimum (Hildebrand, 1908, p291) is the earliest name available at species level. Therefore we propose that the the C. graecum group now comprises two species, one with two subspecies (Table 3). This would be consistent with species concepts elsewhere in the genus Cyclamen and properly reflect the genetic and geographic isolation of this element of the group.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

 Aim: The purpose of this study was to create predictive species distribution models (SDMs) for temperate reef-associated fish species densities and fish assemblage diversity and richness to aid in marine conservation and spatial planning. Location: California, USA. Methods: Using generalized additive models, we associated fish species densities and assemblage characteristics with seafloor structure, giant kelp biomass and wave climate and used these associations to predict the distribution and assemblage structure across the study area. We tested the accuracy of these predicted extrapolations using an independent data set. The SDMs were also used to estimate larger scale abundances to compare with other estimates of species abundance (uniform density extrapolation over rocky reef and density extrapolations taking into account variations in geomorphic structure). Results: The SDMs successfully modelled the species-habitat relationships of seven rocky reef-associated fish species and showed that species' densities differed in their relationships with environmental variables. The predictive accuracy of the SDMs ranged from 0.26 to 0.60 (Pearson's r correlation between observed and predicted density values). The SDMs created for the fish assemblage-level variables had higher prediction accuracies with Pearson's r values of 0.61 for diversity and 0.71 for richness. The comparisons of the different methods for extrapolating species densities over a single marine protected area varied greatly in their abundance estimates with the uniform extrapolation (density values extrapolated evenly over the rocky reef) always estimating much greater abundances. The other two methods, which took into account variation in the geomorphic structure of the reef, provided much lower abundance estimates. Main conclusions: Species distribution models that combine geomorphic, oceanographic and biogenic habitat variables can reliably predict spatial patterns of species density and assemblage attributes of temperate reef fishes at spatial scales of 50 m. Thus, SDMs show great promise for informing spatial and ecosystem-based approaches to conservation and fisheries management. © 2015 John Wiley

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The search for predictions of species diversity across environmental gradients has challenged ecologists for decades. The humped-back model (HBM) suggests that plant diversity peaks at intermediate productivity; at low productivity few species can tolerate the environmental stresses, and at high productivity a few highly competitive species dominate. Over time the HBM has become increasingly controversial, and recent studies claim to have refuted it. Here, by using data from coordinated surveys conducted throughout grasslands worldwide and comprising a wide range of site productivities, we provide evidence in support of the HBM pattern at both global and regional extents. The relationships described here provide a foundation for further research into the local, landscape, and historical factors that maintain biodiversity.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Assessment of the suitability of anthropogenic landscapes for wildlife species is crucial for setting priorities for biodiversity conservation. This study aimed to analyse the environmental suitability of a highly fragmented region of the Brazilian Atlantic Forest, one of the world's 25 recognized biodiversity hotspots, for forest bird species. Eight forest bird species were selected for the analyses, based on point counts (n = 122) conducted in April-September 2006 and January-March 2009. Six additional variables (landscape diversity, distance from forest and streams, aspect, elevation and slope) were modelled in Maxent for (1) actual and (2) simulated land cover, based on the forest expansion required by existing Brazilian forest legislation. Models were evaluated by bootstrap or jackknife methods and their performance was assessed by AUC, omission error, binomial probability or p value. All predictive models were statistically significant, with high AUC values and low omission errors. A small proportion of the actual landscape (24.41 +/- 6.31%) was suitable for forest bird species. The simulated landscapes lead to an increase of c. 30% in total suitable areas. In average, models predicted a small increase (23.69 +/- 6.95%) in the area of suitable native forest for bird species. Being close to forest increased the environmental suitability of landscapes for all bird species; landscape diversity was also a significant factor for some species. In conclusion, this study demonstrates that species distribution modelling (SDM) successfully predicted bird distribution across a heterogeneous landscape at fine spatial resolution, as all models were biologically relevant and statistically significant. The use of landscape variables as predictors contributed significantly to the results, particularly for species distributions over small extents and at fine scales. This is the first study to evaluate the environmental suitability of the remaining Brazilian Atlantic Forest for bird species in an agricultural landscape, and provides important additional data for regional environmental planning.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The bone marrow accommodates hematopoietic stem cells and progenitors. These cells provide an indispensible resource for replenishing the blood constituents throughout an organism’s life. A tissue with such a high turn-over rate mandates intact cycling checkpoint and apoptotic pathways to avoid inappropriate cell proliferation and ultimately the development of leukemias. p53, a major tumor suppressor, is a transcription factor that regulates cell cycle, and induces apoptosis and senescence. Mice inheriting a hypomorphic p53 allele in the absence of Mdm2, a p53 inhibitor, have elevated p53 cell cycle activity and die by postnatal day 13 due to hematopoietic failure. Hematopoiesis progresses normally during embryogenesis until it moves to the bone marrow in late development. Increased oxidative stress in the bone marrow compartment postnatally is the impediment for normal hematopoiesis via activation of p53. p53 in turn stimulates the generation of more reactive oxygen species and depletes bone marrow cellularity. Also, p53 exerts various defects on the hematopoietic niche by increasing mesenchymal lineage populations and their differentiation. Hematopoietic defects are rescued with antioxidants or when cells are cultured at low oxygen levels. Deletion of p16 partially rescues bone marrow cellularity and progenitors via a p53-independent pathway. Thus, although p53 is required to inhibit tumorigenesis, Mdm2 is required to control ROS-induced p53 levels for sustainable hematopoiesis and survival during homeostasis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The search for predictions of species diversity across environmental gradients has challenged ecologists for decades. The humped-back model (HBM) suggests that plant diversity peaks at intermediate productivity; at low productivity few species can tolerate the environmental stresses, and at high productivity a few highly competitive species dominate. Over time the HBM has become increasingly controversial, and recent studies claim to have refuted it. Here, by using data from coordinated surveys conducted throughout grasslands worldwide and comprising a wide range of site productivities, we provide evidence in support of the HBM pattern at both global and regional extents. The relationships described here provide a foundation for further research into the local, landscape, and historical factors that maintain biodiversity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

1. Ecological data sets often use clustered measurements or use repeated sampling in a longitudinal design. Choosing the correct covariance structure is an important step in the analysis of such data, as the covariance describes the degree of similarity among the repeated observations. 2. Three methods for choosing the covariance are: the Akaike information criterion (AIC), the quasi-information criterion (QIC), and the deviance information criterion (DIC). We compared the methods using a simulation study and using a data set that explored effects of forest fragmentation on avian species richness over 15 years. 3. The overall success was 80.6% for the AIC, 29.4% for the QIC and 81.6% for the DIC. For the forest fragmentation study the AIC and DIC selected the unstructured covariance, whereas the QIC selected the simpler autoregressive covariance. Graphical diagnostics suggested that the unstructured covariance was probably correct. 4. We recommend using DIC for selecting the correct covariance structure.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Since land use change can have significant impacts on regional biogeochemistry, we investigated how conversion of forest and cultivation to pasture impact soil C and N cycling. In addition to examining total soil C, we isolated soil physiochemical C fractions in order to understand the mechanisms by which soil C is sequestered or lost. Total soil C did not change significantly over time following conversion from forest, though coarse (250-2,000 mum) particulate organic matter C increased by a factor of 6 immediately after conversion. Aggregate mean weight diameter was reduced by about 50% after conversion, but values were like those under forest after 8 years under pasture. Samples collected from a long-term pasture that was converted from annual cultivation more than 50 years ago revealed that some soil physical properties negatively impacted by cultivation were very slow to recover. Finally, our results indicate that soil macroaggregates turn over more rapidly under pasture than under forest and are less efficient at stabilizing soil C, whereas microaggregates from pasture soils stabilize a larger concentration of C than forest microaggregates. Since conversion from forest to pasture has a minimal impact on total soil C content in the Piedmont region of Virginia, United States, a simple C stock accounting system could use the same base soil C stock value for either type of land use. However, since the effects of forest to pasture conversion are a function of grassland management following conversion, assessments of C sequestration rates require activity data on the extent of various grassland management practices.