995 resultados para Spatial inference


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aim  Recently developed parametric methods in historical biogeography allow researchers to integrate temporal and palaeogeographical information into the reconstruction of biogeographical scenarios, thus overcoming a known bias of parsimony-based approaches. Here, we compare a parametric method, dispersal-extinction-cladogenesis (DEC), against a parsimony-based method, dispersal-vicariance analysis (DIVA), which does not incorporate branch lengths but accounts for phylogenetic uncertainty through a Bayesian empirical approach (Bayes-DIVA). We analyse the benefits and limitations of each method using the cosmopolitan plant family Sapindaceae as a case study.Location  World-wide.Methods  Phylogenetic relationships were estimated by Bayesian inference on a large dataset representing generic diversity within Sapindaceae. Lineage divergence times were estimated by penalized likelihood over a sample of trees from the posterior distribution of the phylogeny to account for dating uncertainty in biogeographical reconstructions. We compared biogeographical scenarios between Bayes-DIVA and two different DEC models: one with no geological constraints and another that employed a stratified palaeogeographical model in which dispersal rates were scaled according to area connectivity across four time slices, reflecting the changing continental configuration over the last 110 million years.Results  Despite differences in the underlying biogeographical model, Bayes-DIVA and DEC inferred similar biogeographical scenarios. The main differences were: (1) in the timing of dispersal events - which in Bayes-DIVA sometimes conflicts with palaeogeographical information, and (2) in the lower frequency of terminal dispersal events inferred by DEC. Uncertainty in divergence time estimations influenced both the inference of ancestral ranges and the decisiveness with which an area can be assigned to a node.Main conclusions  By considering lineage divergence times, the DEC method gives more accurate reconstructions that are in agreement with palaeogeographical evidence. In contrast, Bayes-DIVA showed the highest decisiveness in unequivocally reconstructing ancestral ranges, probably reflecting its ability to integrate phylogenetic uncertainty. Care should be taken in defining the palaeogeographical model in DEC because of the possibility of overestimating the frequency of extinction events, or of inferring ancestral ranges that are outside the extant species ranges, owing to dispersal constraints enforced by the model. The wide-spanning spatial and temporal model proposed here could prove useful for testing large-scale biogeographical patterns in plants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Animal dispersal in a fragmented landscape depends on the complex interaction between landscape structure and animal behavior. To better understand how individuals disperse, it is important to explicitly represent the properties of organisms and the landscape in which they move. A common approach to modelling dispersal includes representing the landscape as a grid of equal sized cells and then simulating individual movement as a correlated random walk. This approach uses a priori scale of resolution, which limits the representation of all landscape features and how different dispersal abilities are modelled. We develop a vector-based landscape model coupled with an object-oriented model for animal dispersal. In this spatially explicit dispersal model, landscape features are defined based on their geographic and thematic properties and dispersal is modelled through consideration of an organism's behavior, movement rules and searching strategies (such as visual cues). We present the model's underlying concepts, its ability to adequately represent landscape features and provide simulation of dispersal according to different dispersal abilities. We demonstrate the potential of the model by simulating two virtual species in a real Swiss landscape. This illustrates the model's ability to simulate complex dispersal processes and provides information about dispersal such as colonization probability and spatial distribution of the organism's path

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the context of multivariate regression (MLR) and seemingly unrelated regressions (SURE) models, it is well known that commonly employed asymptotic test criteria are seriously biased towards overrejection. in this paper, we propose finite-and large-sample likelihood-based test procedures for possibly non-linear hypotheses on the coefficients of MLR and SURE systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work presents Bayes invariant quadratic unbiased estimator, for short BAIQUE. Bayesian approach is used here to estimate the covariance functions of the regionalized variables which appear in the spatial covariance structure in mixed linear model. Firstly a brief review of spatial process, variance covariance components structure and Bayesian inference is given, since this project deals with these concepts. Then the linear equations model corresponding to BAIQUE in the general case is formulated. That Bayes estimator of variance components with too many unknown parameters is complicated to be solved analytically. Hence, in order to facilitate the handling with this system, BAIQUE of spatial covariance model with two parameters is considered. Bayesian estimation arises as a solution of a linear equations system which requires the linearity of the covariance functions in the parameters. Here the availability of prior information on the parameters is assumed. This information includes apriori distribution functions which enable to find the first and the second moments matrix. The Bayesian estimation suggested here depends only on the second moment of the prior distribution. The estimation appears as a quadratic form y'Ay , where y is the vector of filtered data observations. This quadratic estimator is used to estimate the linear function of unknown variance components. The matrix A of BAIQUE plays an important role. If such a symmetrical matrix exists, then Bayes risk becomes minimal and the unbiasedness conditions are fulfilled. Therefore, the symmetry of this matrix is elaborated in this work. Through dealing with the infinite series of matrices, a representation of the matrix A is obtained which shows the symmetry of A. In this context, the largest singular value of the decomposed matrix of the infinite series is considered to deal with the convergence condition and also it is connected with Gerschgorin Discs and Poincare theorem. Then the BAIQUE model for some experimental designs is computed and compared. The comparison deals with different aspects, such as the influence of the position of the design points in a fixed interval. The designs that are considered are those with their points distributed in the interval [0, 1]. These experimental structures are compared with respect to the Bayes risk and norms of the matrices corresponding to distances, covariance structures and matrices which have to satisfy the convergence condition. Also different types of the regression functions and distance measurements are handled. The influence of scaling on the design points is studied, moreover, the influence of the covariance structure on the best design is investigated and different covariance structures are considered. Finally, BAIQUE is applied for real data. The corresponding outcomes are compared with the results of other methods for the same data. Thereby, the special BAIQUE, which estimates the general variance of the data, achieves a very close result to the classical empirical variance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We look at at the empirical validity of Schelling’s models for racial residential segregation applied to the case of Chicago. Most of the empirical literature has focused exclusively the single neighborhood model, also known as the tipping point model and neglected a multineighborhood approach or a unified approach. The multi-neighborhood approach introduced spatial interaction across the neighborhoods, in particular we look at spatial interaction across neighborhoods sharing a border. An initial exploration of the data indicates that spatial contiguity might be relevant to properly analyse the so call tipping phenomena of predominately non-Hispanic white neighborhoods to predominantly minority neighborhoods within a decade. We introduce an econometric model that combines an approach to estimate tipping point using threshold effects and a spatial autoregressive model. The estimation results from the model disputes the existence of a tipping point, that is a discontinuous change in the rate of growth of the non-Hispanic white population due to a small increase in the minority share of the neighborhood. In addition we find that racial distance between the neighborhood of interest and it surrounding neighborhoods has an important effect on the dynamics of racial segregation in Chicago.

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Preservation of rivers and water resources is crucial in most environmental policies and many efforts are made to assess water quality. Environmental monitoring of large river networks are based on measurement stations. Compared to the total length of river networks, their number is often limited and there is a need to extend environmental variables that are measured locally to the whole river network. The objective of this paper is to propose several relevant geostatistical models for river modeling. These models use river distance and are based on two contrasting assumptions about dependency along a river network. Inference using maximum likelihood, model selection criterion and prediction by kriging are then developed. We illustrate our approach on two variables that differ by their distributional and spatial characteristics: summer water temperature and nitrate concentration. The data come from 141 to 187 monitoring stations in a network on a large river located in the Northeast of France that is more than 5000 km long and includes Meuse and Moselle basins. We first evaluated different spatial models and then gave prediction maps and error variance maps for the whole stream network.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider a fully model-based approach for the analysis of distance sampling data. Distance sampling has been widely used to estimate abundance (or density) of animals or plants in a spatially explicit study area. There is, however, no readily available method of making statistical inference on the relationships between abundance and environmental covariates. Spatial Poisson process likelihoods can be used to simultaneously estimate detection and intensity parameters by modeling distance sampling data as a thinned spatial point process. A model-based spatial approach to distance sampling data has three main benefits: it allows complex and opportunistic transect designs to be employed, it allows estimation of abundance in small subregions, and it provides a framework to assess the effects of habitat or experimental manipulation on density. We demonstrate the model-based methodology with a small simulation study and analysis of the Dubbo weed data set. In addition, a simple ad hoc method for handling overdispersion is also proposed. The simulation study showed that the model-based approach compared favorably to conventional distance sampling methods for abundance estimation. In addition, the overdispersion correction performed adequately when the number of transects was high. Analysis of the Dubbo data set indicated a transect effect on abundance via Akaike’s information criterion model selection. Further goodness-of-fit analysis, however, indicated some potential confounding of intensity with the detection function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Geostatistics involves the fitting of spatially continuous models to spatially discrete data (Chil`es and Delfiner, 1999). Preferential sampling arises when the process that determines the data-locations and the process being modelled are stochastically dependent. Conventional geostatistical methods assume, if only implicitly, that sampling is non-preferential. However, these methods are often used in situations where sampling is likely to be preferential. For example, in mineral exploration samples may be concentrated in areas thought likely to yield high-grade ore. We give a general expression for the likelihood function of preferentially sampled geostatistical data and describe how this can be evaluated approximately using Monte Carlo methods. We present a model for preferential sampling, and demonstrate through simulated examples that ignoring preferential sampling can lead to seriously misleading inferences. We describe an application of the model to a set of bio-monitoring data from Galicia, northern Spain, in which making allowance for preferential sampling materially changes the inferences.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

When mapping is formulated in a Bayesian framework, the need of specifying a prior for the environment arises naturally. However, so far, the use of a particular structure prior has been coupled to working with a particular representation. We describe a system that supports inference with multiple priors while keeping the same dense representation. The priors are rigorously described by the user in a domain-specific language. Even though we work very close to the measurement space, we are able to represent structure constraints with the same expressivity as methods based on geometric primitives. This approach allows the intrinsic degrees of freedom of the environment’s shape to be recovered. Experiments with simulated and real data sets will be presented

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Both long-term environmental changes such as those driven by the glacial cycles and more recent anthropogenic impacts have had major effects on the past demography in wild organisms. Within species, these changes are reflected in the amount and distribution of neutral genetic variation. In this thesis, mitochondrial and microsatellite DNA was analysed to investigate how environmental and anthropogenic factors have affected genetic diversity and structure in four ecologically different animal species. Paper I describes the post-glacial recolonisation history of the speckled-wood butterfly (Pararge aegeria) in Northern Europe. A decrease in genetic diversity with latitude and a marked population structure were uncovered, consistent with a hypothesis of repeated founder events during the postglacial recolonisation. Moreover, Approximate Bayesian Computation analyses indicate that the univoltine populations in Scandinavia and Finland originate from recolonisations along two routes, one on each side of the Baltic. Paper II aimed to investigate how past sea-level rises affected the population history of the convict surgeonfish (Acanthurus triostegus) in the Indo-Pacific. Assessment of the species’ demographic history suggested a population expansion that occurred approximately at the end of the last glaciation. Moreover, the results demonstrated an overall lack of phylogeographic structure, probably due to the high dispersal rates associated with the species’ pelagic larval stage. Populations at the species’ eastern range margin were significantly differentiated from other populations, which likely is a consequence of their geographic isolation. In Paper III, we assessed the effect of human impact on the genetic variation of European moose (Alces alces) in Sweden. Genetic analyses revealed a spatial structure with two genetic clusters, one in northern and one in southern Sweden, which were separated by a narrow transition zone. Moreover, demographic inference suggested a recent population bottleneck. The inferred timing of this bottleneck coincided with a known reduction in population size in the 19th and early 20th century due to high hunting pressure. In Paper IV, we examined the effect of an indirect but well-described human impact, via environmental toxic chemicals (PCBs), on the genetic variation of Eurasian otters (Lutra lutra) in Sweden. Genetic clustering assignment revealed differentiation between otters in northern and southern Sweden, but also in the Stockholm region. ABC analyses indicated a decrease in effective population size in both northern and southern Sweden. Moreover, comparative analyses of historical and contemporary samples demonstrated a more severe decline in genetic diversity in southern Sweden compared to northern Sweden, in agreement with the levels of PCBs found.