994 resultados para Spatial Light Modulators
Resumo:
A ferroelectric liquid crystal spatial light modulator is used to generate up to 24 independently controllable traps in a holographic optical tweezers system using time-multiplexed Fresnel zone plates. For use in biological applications, helical zone plates are used to generate Laguerre-Gaussian laser modes. The high speed switching of the ferroelectric device together with recent advances in computer technology enable fast, smooth movement of traps that can be independently controlled in real time. This is demonstrated by the trapping and manipulation of yeast cells and fungal spores. (c) 2006 Optical Society of America.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The need for low-chirp and compact transmitters for high-bit-rate optical links has led to the development of integrated laser electroabsorption modulators (ILM). We have investigated feedback effects inducing frequency chirp by developing a model treating the ILM as a whole and obtained analytical expressions of the FM and AM responses. The variation of the frequency chirp with the residual facet reflectivity of the modulator section is calculated. The model predicts the unusual peak in the measured frequency responses and has been used to define design rules.
Resumo:
We report on the generation of tunable light around 400 nm by frequency-doubling ultrashort laser pulses whose spectral phase is modulated by a sum of sinusoidal functions. The linewidth of the ultraviolet band produced is narrower than 1 nm, in contrast to the 12 nm linewidth of the non-modulated incident spectrum. The influence of pixellation of the liquid crystal spatial light modulator on the efficiency of the phase-modulated second harmonic generation is discussed.
Resumo:
Máster Universitario en Sistemas Inteligentes y Aplicaciones Numéricas en Ingeniería (SIANI)
Resumo:
Turbulence affects traditional free space optical communication by causing speckle to appear in the received beam profile. This occurs due to changes in the refractive index of the atmosphere that are caused by fluctuations in temperature and pressure, resulting in an inhomogeneous medium. The Gaussian-Schell model of partial coherence has been suggested as a means of mitigating these atmospheric inhomogeneities on the transmission side. This dissertation analyzed the Gaussian-Schell model of partial coherence by verifying the Gaussian-Schell model in the far-field, investigated the number of independent phase control screens necessary to approach the ideal Gaussian-Schell model, and showed experimentally that the Gaussian-Schell model of partial coherence is achievable in the far-field using a liquid crystal spatial light modulator. A method for optimizing the statistical properties of the Gaussian-Schell model was developed to maximize the coherence of the field while ensuring that it does not exhibit the same statistics as a fully coherent source. Finally a technique to estimate the minimum spatial resolution necessary in a spatial light modulator was developed to effectively propagate the Gaussian-Schell model through a range of atmospheric turbulence strengths. This work showed that regardless of turbulence strength or receiver aperture, transmitting the Gaussian-Schell model of partial coherence instead of a fully coherent source will yield a reduction in the intensity fluctuations of the received field. By measuring the variance of the intensity fluctuations and the received mean, it is shown through the scintillation index that using the Gaussian-Schell model of partial coherence is a simple and straight forward method to mitigate atmospheric turbulence instead of traditional adaptive optics in free space optical communications.
Resumo:
A complete simulation of the transmission performance for Equalized Holographic ROADM (Reconfigurable Optical Add-Drop Multiplexer) designs is presented in this paper. These devices can address several wavelengths from the input to different output fibres, according to the holograms stored in a SLM (Spatial Light Modulator), where all the outputs are equalized in power. All combinations of the input wavelengths are possible at the different output fibres. To simulate the transmission performance of the EH-ROADM, a software program, from Optiwave, has been used. The correspondence between physical blocks of the device (grating, SLM, lens...) and those simulated in the program (filters, losses, splitters...) has been defined in order to obtain a close agreement between the theoretical transmission performance and the simulated one. To complete the review about Equalized Holographic ROADMs some guidelines about its design have been done.
Resumo:
This paper describes the theory, design, applications and performance of a new Reconfigurable Add-drop Multiplexer (ROADM) with flexible bandwidth allocation. The device can address several wavelengths at the input to four output fibers, according to the holograms stored in a SLM (Spatial Light Modulator), where all the outputs are equalized in power. All combinations of the input wavelengths are possible at the different output fibers. Each fiber has assigned all the signals with the same bandwidth; the possible bandwidths are 12.5GHz, 25GHz, 50GHz and 100GHz, according to ITU-T 694.1 Recommendation. It is possible to route several signals with different bandwidth in real time thanks to Liquid Crystal over Silicon (LCoS) technology.
Resumo:
Some critical aspects of a new kind of on-line measurement technique for micro and nanoscale surface measurements are described. This attempts to use spatial light-wave scanning to replace mechanical stylus scanning, and an optical fibre interferometer to replace optically bulky interferometers for measuring the surfaces. The basic principle is based on measuring the phase shift of a reflected optical signal. Wavelength-division-multiplexing and fibre Bragg grating techniques are used to carry out wavelength-to-field transformation and phase-to-depth detection, allowing a large dynamic measurement ratio (range/resolution) and high signal-to-noise ratio with remote access. In effect the paper consists of two parts: multiplexed fibre interferometry and remote on-machine surface detection sensor (an optical dispersive probe). This paper aims to investigate the metrology properties of a multiplexed fibre interferometer and to verify its feasibility by both theoretical and experimental studies. Two types of optical probes, using a dispersive prism and a blazed grating, respectively, are introduced to realize wavelength-to-spatial scanning.
Resumo:
We propose a self-reference multiplexed fibre interferometer (MFI) by using a tunable laser and fibre Bragg grating (FBG). The optical measurement system multiplexes two Michelson fibre interferometers with shared optical path in the main part of optical system. One fibre optic interferometer is used as a reference interferometer to monitor and control the high accuracy of the measurement system under environmental perturbations. The other is used as a measurement interferometer to obtain information from the target. An active phase tracking homodyne (APTH) technique is applied for signal processing to achieve high resolution. MFI can be utilised for high precision absolute displacement measurement with different combination of wavelengths from the tuneable laser. By means of Wavelength-Division-Multiplexing (WDM) technique, MFI is also capable of realising on-line surface measurement, in which traditional stylus scanning is replaced by spatial light-wave scanning so as to greatly improve the measurement speed and robustness.
Resumo:
Some critical aspects of a new kind of on-line measurement technique for micro and nanoscale surface measurements are described. This attempts to use spatial light-wave scanning to replace mechanical stylus scanning, and an optical fibre interferometer to replace optically bulky interferometers for measuring the surfaces. The basic principle is based on measuring the phase shift of a reflected optical signal. Wavelength-division-multiplexing and fibre Bragg grating techniques are used to carry out wavelength-to-field transformation and phase-to-depth detection, allowing a large dynamic measurement ratio (range/resolution) and high signal-to-noise ratio with remote access. In effect the paper consists of two parts: multiplexed fibre interferometry and remote on-machine surface detection sensor (an optical dispersive probe). This paper aims to investigate the metrology properties of a multiplexed fibre interferometer and to verify its feasibility by both theoretical and experimental studies. Two types of optical probes, using a dispersive prism and a blazed grating, respectively, are introduced to realize wavelength-to-spatial scanning.
Resumo:
We propose a self-reference multiplexed fibre interferometer (MFI) by using a tunable laser and fibre Bragg grating (FBG). The optical measurement system multiplexes two Michelson fibre interferometers with shared optical path in the main part of optical system. One fibre optic interferometer is used as a reference interferometer to monitor and control the high accuracy of the measurement system under environmental perturbations. The other is used as a measurement interferometer to obtain information from the target. An active phase tracking homodyne (APTH) technique is applied for signal processing to achieve high resolution. MFI can be utilised for high precision absolute displacement measurement with different combination of wavelengths from the tuneable laser. By means of Wavelength-Division-Multiplexing (WDM) technique, MFI is also capable of realising on-line surface measurement, in which traditional stylus scanning is replaced by spatial light-wave scanning so as to greatly improve the measurement speed and robustness. © 2004 Optical Society of America.
Resumo:
Dada la importancia que hoy día presenta dentro del ámbito de la óptica, la implementación y conocimiento de dispositivos capaces tanto de generar aberraciones ópticas bien caracterizadas como de censarlas, se presenta a lo largo de este trabajo el desarrollo de una interfaz gráfica en MATLAB, que permita simular el funcionamiento tanto de un sensor de frente de onda de Hartamnn-Shack (HS), así como la simulación de dispositivos capaces de modificar frentes de onda como los SLM, adicionando algoritmos de propagación y cálculo de centroides -- Para ello, se implementarán en primer lugar máscaras de fase que generen frentes de onda aberrados a partir de la modulación en fase de moduladores espaciales de luz o SLM, tanto a través de funciones lente de primer orden en representación de las aberraciones constantes, como de fase cuadrática en representación de las aberraciones de bajo orden y adicionalmente como combinaciones lineales de polinomios de Zernike -- Todo lo anterior se simulará teniendo en cuenta las características técnicas de los SLM, como lo son el número de pixeles en x y en y, el tamaño de estos y la curva de calibración de los moduladores espaciales, tanto para una relación lineal como para una relación no lineal -- Posteriormente se simularán las dos propagaciones sufridas por los haces de luz desde el SLM hasta el CCD (dispositivo de carga acoplada), pasando a través de la matriz de multilentes del HS (MLA), a partir de la implementación de algoritmos de propagación de un solo paso, que nos permitirán observar sobre el plano del CDD el mapa de spots necesario para el censado de las superficies -- Continuaremos con la construcción de algoritmos para determinar los centroides de dicho mapa y sus respectivas coordenadas, seguiremos con la implementación de algoritmos de reconstrucción modal empleados por sensores de frente de onda de Hartmann-Shack, y finalmente compararemos el grado de error existente entre las superficies generadas y las superficies censadas a través del cálculo de su error cuadrático medio
Resumo:
Multilayer systems obtained using the Layer-by-Layer (LbL) technology have been proposed for a variety of biomedical applications in tissue engineering and regenerative medicine. LbL assembly is a simple and highly versatile method to modify surfaces and fabricate robust and highly-ordered nanostructured coatings over almost any type of substrates and with a wide range of substances. The incorporation of polyoxometalate (POM) inorganic salts as constituents of the layers presents a possibility of promoting light-stimuli responses in LbL substrates. We propose the design of a biocompatible photo-responsive multilayer system based on a Preyssler-type POM ([NaP5W30O110]14â ) and a natural origin polymer, chitosan, using the LbL methodology. The photo-reduction properties of the POM allow the spatially controlled disruption of the assembled layers due to the weakening of the electrostatic interactions between the layers. This system has found applicability in detaching devices, such as the cell sheet technology, which may solve the drawbacks actually found in other cell treatment proposals.
Resumo:
Coronal mass ejections (CMEs) can be continuously tracked through a large portion of the inner heliosphere by direct imaging in visible and radio wavebands. White light (WL) signatures of solar wind transients, such as CMEs, result from Thomson scattering of sunlight by free electrons and therefore depend on both viewing geometry and electron density. The Faraday rotation (FR) of radio waves from extragalactic pulsars and quasars, which arises due to the presence of such solar wind features, depends on the line-of-sight magnetic field component B ∥ and the electron density. To understand coordinated WL and FR observations of CMEs, we perform forward magnetohydrodynamic modeling of an Earth-directed shock and synthesize the signatures that would be remotely sensed at a number of widely distributed vantage points in the inner heliosphere. Removal of the background solar wind contribution reveals the shock-associated enhancements in WL and FR. While the efficiency of Thomson scattering depends on scattering angle, WL radiance I decreases with heliocentric distance r roughly according to the expression Ir –3. The sheath region downstream of the Earth-directed shock is well viewed from the L4 and L5 Lagrangian points, demonstrating the benefits of these points in terms of space weather forecasting. The spatial position of the main scattering site r sheath and the mass of plasma at that position M sheath can be inferred from the polarization of the shock-associated enhancement in WL radiance. From the FR measurements, the local B ∥sheath at r sheath can then be estimated. Simultaneous observations in polarized WL and FR can not only be used to detect CMEs, but also to diagnose their plasma and magnetic field properties.