962 resultados para Space environment
Resumo:
Every space launch increases the overall amount of space debris. Satellites have limited awareness of nearby objects that might pose a collision hazard. Astrometric, radiometric, and thermal models for the study of space debris in low-Earth orbit have been developed. This modeled approach proposes analysis methods that provide increased Local Area Awareness for satellites in low-Earth and geostationary orbit. Local Area Awareness is defined as the ability to detect, characterize, and extract useful information regarding resident space objects as they move through the space environment surrounding a spacecraft. The study of space debris is of critical importance to all space-faring nations. Characterization efforts are proposed using long-wave infrared sensors for space-based observations of debris objects in low-Earth orbit. Long-wave infrared sensors are commercially available and do not require solar illumination to be observed, as their received signal is temperature dependent. The characterization of debris objects through means of passive imaging techniques allows for further studies into the origination, specifications, and future trajectory of debris objects. Conclusions are made regarding the aforementioned thermal analysis as a function of debris orbit, geometry, orientation with respect to time, and material properties. Development of a thermal model permits the characterization of debris objects based upon their received long-wave infrared signals. Information regarding the material type, size, and tumble-rate of the observed debris objects are extracted. This investigation proposes the utilization of long-wave infrared radiometric models of typical debris to develop techniques for the detection and characterization of debris objects via signal analysis of unresolved imagery. Knowledge regarding the orbital type and semi-major axis of the observed debris object are extracted via astrometric analysis. This knowledge may aid in the constraint of the admissible region for the initial orbit determination process. The resultant orbital information is then fused with the radiometric characterization analysis enabling further characterization efforts of the observed debris object. This fused analysis, yielding orbital, material, and thermal properties, significantly increases a satellite’s Local Area Awareness via an intimate understanding of the debris environment surrounding the spacecraft.
Resumo:
This research addresses the problem of creating interactive experiences to encourage people to explore spaces. Besides the obvious spaces to visit, such as museums or art galleries, spaces that people visit can be, for example, a supermarket or a restaurant. As technology evolves, people become more demanding in the way they use it and expect better forms of interaction with the space that surrounds them. Interaction with the space allows information to be transmitted to the visitors in a friendly way, leading visitors to explore it and gain knowledge. Systems to provide better experiences while exploring spaces demand hardware and software that is not in the reach of every space owner either because of the cost or inconvenience of the installation, that can damage artefacts or the space environment. We propose a system adaptable to the spaces, that uses a video camera network and a wi-fi network present at the space (or that can be installed) to provide means to support interactive experiences using the visitor’s mobile device. The system is composed of an infrastructure (called vuSpot), a language grammar used to describe interactions at a space (called XploreDescription), a visual tool used to design interactive experiences (called XploreBuilder) and a tool used to create interactive experiences (called urSpace). By using XploreBuilder, a tool built of top of vuSpot, a user with little or no experience in programming can define a space and design interactive experiences. This tool generates a description of the space and of the interactions at that space (that complies with the XploreDescription grammar). These descriptions can be given to urSpace, another tool built of top of vuSpot, that creates the interactive experience application. With this system we explore new forms of interaction and use mobile devices and pico projectors to deliver additional information to the users leading to the creation of interactive experiences. The several components are presented as well as the results of the respective user tests, which were positive. The design and implementation becomes cheaper, faster, more flexible and, since it does not depend on the knowledge of a programming language, accessible for the general public.
Resumo:
OBJECTIVE: The cause precipitating intracranial aneurysm rupture remains unknown in many cases. It has been observed that aneurysm ruptures are clustered in time, but the trigger mechanism remains obscure. Because solar activity has been associated with cardiovascular mortality and morbidity, we decided to study its association to aneurysm rupture in the Swiss population. METHODS: Patient data were extracted from the Swiss SOS database, at time of analysis covering 918 consecutive patients with angiography-proven aneurysmal subarachnoid hemorrhage treated at 7 Swiss neurovascular centers between January 1, 2009, and December 31, 2011. The daily rupture frequency (RF) was correlated to the absolute amount and the change in various parameters of interest representing continuous measurements of solar activity (radioflux [F10.7 index], solar proton flux, solar flare occurrence, planetary K-index/planetary A-index, Space Environment Services Center [SESC] sunspot number and sunspot area) using Poisson regression analysis. RESULTS: During the period of interest, there were 517 days without recorded aneurysm rupture. There were 398, 139, 27, 12, 1, and 1 days with 1, 2, 3, 4, 5, and 6 ruptures per day. Poisson regression analysis demonstrated a significant correlation of F10.7 index and RF (incidence rate ratio [IRR] = 1.006303; standard error (SE) 0.0013201; 95% confidence interval (CI) 1.003719-1.008894; P < 0.001), according to which every 1-unit increase of the F10.7 index increased the count for an aneurysm to rupture by 0.63%. A likewise statistically significant relationship of both the SESC sunspot number (IRR 1.003413; SE 0.0007913; 95% CI 1.001864-1.004965; P < 0.001) and the sunspot area (IRR 1.000419; SE 0.0000866; 95% CI 1.000249-1.000589; P < 0.001) emerged. All other variables analyzed showed no significant correlation with RF. CONCLUSIONS: We found greater radioflux, SESC sunspot number, and sunspot area to be associated with an increased count of aneurysm rupture. The clinical meaningfulness of this statistical association must be interpreted carefully and future studies are warranted to rule out a type-1 error.
Resumo:
Amb el present treball es vol aprofundir en la manera que influeix l’organització d’espais, d’ambients i les característiques dels materials en el procés educatiu. A partir d’una recerca teòrica en base les necessitats educatives de la societat actual, les necessitats evolutives dels infants, i en base a l’observació i anàlisi d’escoles reggianes i catalanes referents que tenen en compte com a agent educador l’espai, els ambients i els materials, es volen reunir quines són les característiques bàsiques de l’organització dels espais, ambients i materials per garantir una educació de qualitat a l’etapa infantil (3-6).
Resumo:
We report the results of a multi-instrument, multi-technique, coordinated study of the solar eruptive event of 13 May 2005. We discuss the resultant Earth-directed (halo) coronal mass ejection (CME), and the effects on the terrestrial space environment and upper Earth atmosphere. The interplanetary CME (ICME) impacted the Earth’s magnetosphere and caused the most-intense geomagnetic storm of 2005 with a Disturbed Storm Time (Dst) index reaching −263 nT at its peak. The terrestrial environment responded to the storm on a global scale. We have combined observations and measurements from coronal and interplanetary remote-sensing instruments, interplanetary and near-Earth in-situ measurements, remote-sensing observations and in-situ measurements of the terrestrial magnetosphere and ionosphere, along with coronal and heliospheric modelling. These analyses are used to trace the origin, development, propagation, terrestrial impact, and subsequent consequences of this event to obtain the most comprehensive view of a geo-effective solar eruption to date. This particular event is also part of a NASA-sponsored Living With a Star (LWS) study and an on-going US NSF-sponsored Solar, Heliospheric, and INterplanetary Environment (SHINE) community investigation.
Resumo:
Cooled infrared filters have been used in pressure modulation and filter radiometry to measure the dynamics, temperature distribution and concentrations of atmospheric elements in various satellite radiometers. Invariably such instruments use precision infrared bandpass filters and coatings for spectral selction, often operating at cryogenic temperatures. More recent developments in the use of spectrally-selective cooled detectors in focal plane arrays have simplified the optical layout and reduced the component count of radiometers but have placed additional demands on both the spectral and physical performance requirements of the filters. This paper describes and contrasts the more traditional radiometers using discrete detectors with those which use focal plane detector array technology, with particular emphasis on the function of the filters and coatings in the two cases. Additionally we discuss the spectral techniques and materials used to fabricate infrared coatings and filters for use in space optics, and give examples of their application in the fabrication of some demanding long wavelength dichroics and filters. We also discuss the effects of the space environment on the stability and durability of high performance infrared filters and materials exposed to low Earth orbit for 69 months on the NASA Long Duration Exposure Facility (LDEF).
Resumo:
Pós-graduação em Letras - IBILCE
Resumo:
The increasing number of space debris in operating regions around the earth constitutes a real threat to space missions. The goal of the research is to establish appropriate scientific-technological conditions to prevent the destruction and/or impracticability of spacecraft in imminent collision in these regions. A definitive solution to this problem has not yet been reached with the degree of precision that the dynamics of spatial objects (vehicle and debris) requires mainly due to the fact that collisions occur in chains and fragmentation of these objects in the space environment. This fact threatens the space missions on time and with no prospects for a solution in the near future. We present an optimization process in finding the initial conditions (CIC) to collisions, considering the symmetry of the distributions of maximum relative positions between spatial objects with respect to the spherical angles. For this, we used the equations of the dynamics on the Clohessy-Witshire, representing a limit of validation that is highly computationally costly. We simulate different maximum relative positions values of the corresponding initial conditions given in terms of spherical angles. Our results showed that there are symmetries that significantly reduce operating costs, such that the search of the CIC is advantageously carried out up to 4 times the initial processing routine. Knowledge of CIC allows the propulsion system operating vehicle implement evasive maneuvers before impending collisions with space debris.
Sviluppo di un sistema miniaturizzato per il controllo real-time di assetto di nano e microsatelliti
Resumo:
Microsatelliti e nanosatelliti, come ad esempio i Cubesat, sono carenti di sistemi integrati di controllo d’assetto e di manovra orbitale. Lo scopo di questa tesi è stato quello di realizzare un sistema compatibile con Cubesat di una unità, completo di attuatori magnetici e attuatori meccanici, comprendente tutti i sensori e l’elettronica necessaria per il suo funzionamento, creando un dispositivo totalmente indipendente dal veicolo su cui è installato, capace di funzionare sia autonomamente che ricevendo comandi da terra. Nella tesi sono descritte le campagne di simulazioni numeriche effettuate per validare le scelte tecnologiche effettuate, le fasi di sviluppo dell’elettronica e della meccanica, i test sui prototipi realizzati e il funzionamento del sistema finale. Una integrazione così estrema dei componenti può implicare delle interferenze tra un dispositivo e l’altro, come nel caso dei magnetotorquer e dei magnetometri. Sono stati quindi studiati e valutati gli effetti della loro interazione, verificandone l’entità e la validità del progetto. Poiché i componenti utilizzati sono tutti di basso costo e di derivazione terrestre, è stata effettuata una breve introduzione teorica agli effetti dell’ambiente spaziale sull’elettronica, per poi descrivere un sistema fault-tolerant basato su nuove teorie costruttive. Questo sistema è stato realizzato e testato, verificando così la possibilità di realizzare un controller affidabile e resistente all’ambiente spaziale per il sistema di controllo d’assetto. Sono state infine analizzate alcune possibili versioni avanzate del sistema, delineandone i principali aspetti progettuali, come ad esempio l’integrazione di GPS e l’implementazione di funzioni di determinazione d’assetto sfruttando i sensori presenti a bordo.
Resumo:
The relatively young discipline of astronautics represents one of the scientifically most fascinating and technologically advanced achievements of our time. The human exploration in space does not offer only extraordinary research possibilities but also demands high requirements from man and technology. The space environment provides a lot of attractive experimental tools towards the understanding of fundamental mechanism in natural sciences. It has been shown that especially reduced gravity and elevated radiation, two distinctive factors in space, influence the behavior of biological systems significantly. For this reason one of the key objectives on board of an earth orbiting laboratory is the research in the field of life sciences, covering the broad range from botany, human physiology and crew health up to biotechnology. The Columbus Module is the only European low gravity platform that allows researchers to perform ambitious experiments in a continuous time frame up to several months. Biolab is part of the initial outfitting of the Columbus Laboratory; it is a multi-user facility supporting research in the field of biology, e.g. effect of microgravity and space radiation on cell cultures, micro-organisms, small plants and small invertebrates. The Biolab IEC are projects designed to work in the automatic part of Biolab. In this moment in the TO-53 department of Airbus Defence & Space (formerly Astrium) there are two experiments that are in phase C/D of the development and they are the subject of this thesis: CELLRAD and CYTOSKELETON. They will be launched in soft configuration, that means packed inside a block of foam that has the task to reduce the launch loads on the payload. Until 10 years ago the payloads which were launched in soft configuration were supposed to be structural safe by themselves and a specific structural analysis could be waived on them; with the opening of the launchers market to private companies (that are not under the direct control of the international space agencies), the requirements on the verifications of payloads are changed and they have become much more conservative. In 2012 a new random environment has been introduced due to the new Space-X launch specification that results to be particularly challenging for the soft launched payloads. The last ESA specification requires to perform structural analysis on the payload for combined loads (random vibration, quasi-steady acceleration and pressure). The aim of this thesis is to create FEM models able to reproduce the launch configuration and to verify that all the margins of safety are positive and to show how they change because of the new Space-X random environment. In case the results are negative, improved design solution are implemented. Based on the FEM result a study of the joins has been carried out and, when needed, a crack growth analysis has been performed.
Resumo:
The space environment has always been one of the most challenging for communications, both at physical and network layer. Concerning the latter, the most common challenges are the lack of continuous network connectivity, very long delays and relatively frequent losses. Because of these problems, the normal TCP/IP suite protocols are hardly applicable. Moreover, in space scenarios reliability is fundamental. In fact, it is usually not tolerable to lose important information or to receive it with a very large delay because of a challenging transmission channel. In terrestrial protocols, such as TCP, reliability is obtained by means of an ARQ (Automatic Retransmission reQuest) method, which, however, has not good performance when there are long delays on the transmission channel. At physical layer, Forward Error Correction Codes (FECs), based on the insertion of redundant information, are an alternative way to assure reliability. On binary channels, when single bits are flipped because of channel noise, redundancy bits can be exploited to recover the original information. In the presence of binary erasure channels, where bits are not flipped but lost, redundancy can still be used to recover the original information. FECs codes, designed for this purpose, are usually called Erasure Codes (ECs). It is worth noting that ECs, primarily studied for binary channels, can also be used at upper layers, i.e. applied on packets instead of bits, offering a very interesting alternative to the usual ARQ methods, especially in the presence of long delays. A protocol created to add reliability to DTN networks is the Licklider Transmission Protocol (LTP), created to obtain better performance on long delay links. The aim of this thesis is the application of ECs to LTP.
Resumo:
This thesis was carried out inside the ESA's ESEO mission and focus in the design of one of the secondary payloads carried on board the spacecraft: a GNSS receiver for orbit determination. The purpose of this project is to test the technology of the orbit determination in real time applications by using commercial components. The architecture of the receiver includes a custom part, the navigation computer, and a commercial part, the front-end, from Novatel, with COCOM limitation removed, and a GNSS antenna. This choice is motivated by the goal of demonstrating the correct operations in orbit, enabling a widespread use of this technology while lowering the cost and time of the device’s assembly. The commercial front-end performs GNSS signal acquisition, tracking and data demodulation and provides raw GNSS data to the custom computer. This computer processes this raw observables, that will be both transferred to the On-Board Computer and then transmitted to Earth and provided as input to the recursive estimation filter on-board, in order to obtain an accurate positioning of the spacecraft, using the dynamic model. The main purpose of this thesis, is the detailed design and development of the mentioned GNSS receiver up to the ESEO project Critical Design Review, including requirements definition, hardware design and breadboard preliminary test phase design.
Resumo:
OBJECTIVE The cause precipitating intracranial aneurysm rupture remains unknown in many cases. It has been observed that aneurysm ruptures are clustered in time, but the trigger mechanism remains obscure. Because solar activity has been associated with cardiovascular mortality and morbidity, we decided to study its association to aneurysm rupture in the Swiss population. METHODS Patient data were extracted from the Swiss SOS database, at time of analysis covering 918 consecutive patients with angiography-proven aneurysmal subarachnoid hemorrhage treated at 7 Swiss neurovascular centers between January 1, 2009, and December 31, 2011. The daily rupture frequency (RF) was correlated to the absolute amount and the change in various parameters of interest representing continuous measurements of solar activity (radioflux [F10.7 index], solar proton flux, solar flare occurrence, planetary K-index/planetary A-index, Space Environment Services Center [SESC] sunspot number and sunspot area) using Poisson regression analysis. RESULTS During the period of interest, there were 517 days without recorded aneurysm rupture. There were 398, 139, 27, 12, 1, and 1 days with 1, 2, 3, 4, 5, and 6 ruptures per day. Poisson regression analysis demonstrated a significant correlation of F10.7 index and RF (incidence rate ratio [IRR] = 1.006303; standard error (SE) 0.0013201; 95% confidence interval (CI) 1.003719-1.008894; P < 0.001), according to which every 1-unit increase of the F10.7 index increased the count for an aneurysm to rupture by 0.63%. A likewise statistically significant relationship of both the SESC sunspot number (IRR 1.003413; SE 0.0007913; 95% CI 1.001864-1.004965; P < 0.001) and the sunspot area (IRR 1.000419; SE 0.0000866; 95% CI 1.000249-1.000589; P < 0.001) emerged. All other variables analyzed showed no significant correlation with RF. CONCLUSIONS We found greater radioflux, SESC sunspot number, and sunspot area to be associated with an increased count of aneurysm rupture. The clinical meaningfulness of this statistical association must be interpreted carefully and future studies are warranted to rule out a type-1 error.
Resumo:
Objective: A number of intrinsic and extrinsic risk factors for the rupture of intracranial aneurysms have been identified. Still, the cause precipitating aneurysm rupture remains unknown in many cases. In addition, it has been observed that aneurysm ruptures are clustered in time but the trigger mechanism remains obscure. As solar activity has been associated with cardiovascular mortality and morbidity we decided to study ist association to aneurysm rupture in the Swiss population. Method: Patient data was extracted from the Swiss SOS database, at time of analysis covering 918 patients with angiography-proven aSAH treated at seven Swiss neurovascular centers between 01/01/2009 – 12/31/2011. The number of aneurysm rupture per day, week, month (Daily/Weekly/Monthly Rupture Frequency = RF) was measured and correlated to the absolute amount and the change in various parameters of interest representing continuous measurements of solar activity (radioflux (F10.7 index), solar proton flux, solar flare occurrence, planetary K-index/planetary A-index) using Poisson regression analysis. Results: Of a consecutive series of 918 cases of SAH, precise determination of the date of symptom onset was possible in 816 (88.9%). During the period of interest there were 517 days without recorded aneurysm rupture. There were 398, 139, 27 and 12 days with 1, 2, 3, and 4 ruptures per day. Five or 6 ruptures were only noted on a single day each. Poisson regression analysis demonstrated a significant correlation of F10.7 index and aneurysm rupture (incidence rate ratio (IRR) = 1.006303; standard error (SE) 0.0013201; 95% confidence interval (CI) 1.003719 – 1.008894; p<0.001), according to which every 1-unit increase of the F10.7 index increased the count for an aneurysm to rupture by 0.63%. As the F10.7 index is known to correlate well with the Space Environment Services Center (SESC) sunspot number, we performed additional analyses on SESC sunspot number and sunspot area. Here, a likewise statistically significant relationship of both the SESC sunspot number (IRR 1.003413; SE 0.0007913; 95%CI 1.001864 – 1.004965; p<0.001) and the sunspot area (IRR 1.000419; SE 0.0000866; 95%CI 1.000249 – 1.000589; p<0.001) emerged. All other variables analyzed showed no correlation with RF. Conclusions: Using valid methods, we found higher radioflux, sunspot number and sunspot area to be associated with an increased count of aneurysm rupture. Since we were using rupture frequencies rather than incidences and because we cannot explain the physiological basis of this statistical association, the clinical meaningfulness of this statistical association must be interpreted carefully. Future studies are warranted to rule out a type-1 error.