951 resultados para Soy-based products


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Historically, the health risk of mycotoxins had been evaluated on the basis of single-chemical and single-exposure pathway scenarios. However, the co-contamination of foodstuffs with these compounds is being reported at an increasing rate and a multiple-exposure scenario for humans and vulnerable population groups as children is urgently needed. Cereals are among the first solid foods eaten by child and thus constitute an important food group of their diet. Few data are available relatively to early stages child´s exposure to mycotoxins through consumption of cereal-based foods. The present study aims to perform the cumulative risk assessment of mycotoxins present in a set of cereal-based foods including breakfast cereals (BC), processed cereal-based foods (PCBF) and biscuits (BT), consumed by children (1 to 3 years old, n=75) from Lisbon region, Portugal. Children food consumption and occurrence of 12 mycotoxins (aflatoxins, ochratoxin A, fumonisins and trichothecenes) in cereal-based foods were combined to estimate the mycotoxin daily intake, using deterministic and probabilistic approaches. Different strategies were used to treat the left censored data. For aflatoxins, as carcinogenic compounds, the margin of exposure (MoE) was calculated as a ratio of BMDL (benchmark dose lower confidence limit) and aflatoxin daily exposure. For the remaining mycotoxins, the output of exposure was compared to the dose reference values (TDI) in order to calculate the hazard quotients (HQ, ratio between exposure and a reference dose). The concentration addition (CA) concept was used for the cumulative risk assessment of multiple mycotoxins. The combined margin of exposure (MoET) and the hazard index (HI) were calculated for aflatoxins and the remaining mycotoxins, respectively. Main results revealed a significant health concern related to aflatoxins and especially aflatoxin M1 exposure according to the MoET and MoE values (below 10000), respectively. HQ and HI values for the remaining mycotoxins were below 1, revealing a low concern from a public health point of view. These are the first results on cumulative risk assessment of multiple mycotoxins present in cereal-based foods consumed by children. Considering the present results, more research studies are needed to provide the governmental regulatory bodies with data to develop an approach that contemplate the human exposure and, particularly, children, to multiple mycotoxins in food. The last issue is particularly important considering the potential synergistic effects that could occur between mycotoxins and its potential impact on human and, mainly, children health.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Soy and soy-based products are widely consumed by infants and adult individuals. There has been speculation that the presence of isoflavone phytoestrogens in soybean cause adverse effects on the development and function of the male reproductive system. The purpose of this study was to examine the influence of dietary soy and phytoestrogens on testicular and reproductive functions. Male mice were fed from conception to adulthood with either a high soy-containing diet or a soy-free diet. Although adult mice fed a soy-rich diet exhibited normal male behaviour and were fertile, we observed a reduced proportion of haploid germ cells in testes correlating with a 25% decrease in epididymal sperm counts and a 21% reduction in litter size. LH and androgens levels were not affected but transcripts coding for androgen-response genes in Sertoli cells and Gapd-s, a germ cell-specific gene involved in sperm glycolysis and mobility were significantly reduced. In addition, we found that dietary soy decreased the size of the seminal vesicle but without affecting its proteolytic activity. Taken together, these studies show that long-term exposure to dietary soy and phytoestrogens may affect male reproductive function resulting in a small decrease in sperm count and fertility.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

3rd Historic Mortars Conference, 11-14 September 2013, Glasgow, Scotland

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This report summarizes the purchasing activity for soy based inks and recycled content trash bags for the Iowa DOT.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The report summarizes the purchasing activity for soy based inks and recycled content trash bags for the Iowa DOT.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This report summarizes the purchase activity for soy based inks and recycled content trash bags for the Iowa Department of Transportation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Individuals with dysphagia may be prescribed thickened fluids to promote a safer and more successful swallow. Starch-based thickening agents are often employed; however, these exhibit great variation in consistency. The aim of this study was to compare viscosity and the rheological profile parameters complex (G*), viscous (G″), and elastic modulus (G′) over a range of physiological shear rates. UK commercially available dysphagia products at “custard” consistency were examined. Commercially available starch-based dysphagia products were prepared according to manufacturers’ instructions; the viscosity and rheological parameters were tested on a CVOR Rheometer. At a measured shear rate of 50 s−1, all products fell within the viscosity limits defined according to the National Dysphagia Diet Task Force guidelines. However, at lower shear rates, large variations in viscosity were observed. Rheological parameters G*, G′, and G″ also demonstrated considerable differences in both overall strength and rheological behavior between different batches of the same product and different product types. The large range in consistency and changes in the overall structure of the starch-based products over a range of physiological shear rates show that patients could be receiving fluids with very different characteristics from that advised. This could have detrimental effects on their ability to swallow.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Chitosan biocompatibility and biodegradability properties make this biopolymer promising for the development of advanced internal fixation devices for orthopedic applications. This work presents a detailed study on the production and characterization of three dimensional (3D) dense, non-porous, chitosan-based structures, with the ability to be processed in different shapes, and also with high strength and stiffness. Such features are crucial for the application of such 3D structures as bioabsorbable implantable devices. The influence of chitosan's molecular weight and the addition of one plasticizer (glycerol) on 3D dense chitosan-based products' biomechanical properties were explored. Several specimens were produced and in vitro studies were performed in order to assess the cytotoxicity of these specimens and their physical behavior throughout the enzymatic degradation experiments. The results point out that glycerol does not impact on cytotoxicity and has a high impact in improving mechanical properties, both elasticity and compressive strength. In addition, human mesenchymal stem/stromal cells (MSC) were used as an ex-vivo model to study cell adhesion and proliferation on these structures, showing promising results with fold increase values in total cell number similar to the ones obtained in standard cell culture flasks. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this study, a new waste management solution for thermoset glass fibre reinforced polymer (GFRP) based products was assessed. Mechanical recycling approach, with reduction of GFRP waste to powdered and fibrous materials was applied, and the prospective added-value of obtained recyclates was experimentally investigated as raw material for polyester based mortars. Different GFRP waste admixed mortar formulations were analyzed varying the content, between 4% up to 12% in weight, of GFRP powder and fibre mix waste. The effect of incorporation of a silane coupling agent was also assessed. Design of experiments and data treatment was accomplished through implementation of full factorial design and analysis of variance ANOVA. Added value of potential recycling solution was assessed by means of flexural and compressive loading capacity of GFRP waste admixed mortars with regard to unmodified polymer mortars. The key findings of this study showed a viable technological option for improving the quality of polyester based mortars and highlight a potential cost-effective waste management solution for thermoset composite materials in the production of sustainable concrete-polymer based products.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The development and applications of thermoset polymeric composites, namely fibre reinforced plastics (FRP), have shifted in the last decades more and more into the mass market [1]. Despite of all advantages associated to FRP based products, the increasing production and consume also lead to an increasing amount of FRP wastes, either end-of-lifecycle products, or scrap and by-products generated by the manufacturing process itself. Whereas thermoplastic FRPs can be easily recycled, by remelting and remoulding, recyclability of thermosetting FRPs constitutes a more difficult task due to cross-linked nature of resin matrix. To date, most of the thermoset based FRP waste is being incinerated or landfilled, leading to negative environmental impacts and supplementary added costs to FRP producers and suppliers. This actual framework is putting increasing pressure on the industry to address the options available for FRP waste management, being an important driver for applied research undertaken cost efficient recycling methods. [1-2]. In spite of this, research on recycling solutions for thermoset composites is still at an elementary stage. Thermal and/or chemical recycling processes, with partial fibre recovering, have been investigated mostly for carbon fibre reinforced plastics (CFRP) due to inherent value of carbon fibre reinforcement; whereas for glass fibre reinforced plastics (GFRP), mechanical recycling, by means of milling and grinding processes, has been considered a more viable recycling method [1-2]. Though, at the moment, few solutions in the reuse of mechanically-recycled GFRP composites into valueadded products are being explored. Aiming filling this gap, in this study, a new waste management solution for thermoset GFRP based products was assessed. The mechanical recycling approach, with reduction of GFRP waste to powdered and fibrous materials was applied, and the potential added value of obtained recyclates was experimentally investigated as raw material for polyester based mortars. The use of a cementless concrete as host material for GFRP recyclates, instead of a conventional Portland cement based concrete, presents an important asset in avoiding the eventual incompatibility problems arisen from alkalis silica reaction between glass fibres and cementious binder matrix. Additionally, due to hermetic nature of resin binder, polymer based concretes present greater ability for incorporating recycled waste products [3]. Under this scope, different GFRP waste admixed polymer mortar (PM) formulations were analyzed varying the size grading and content of GFRP powder and fibre mix waste. Added value of potential recycling solution was assessed by means of flexural and compressive loading capacities of modified mortars with regard to waste-free polymer mortars.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Biomaterials have been extensively developed and applied in medical devices. Among these materials, bioabsorbable polymers have attracted special attention for orthopedic applications where a transient existence of an implant can provide better results, when compared with permanent implants. Chitosan, a natural biopolymer, has generated enormous interest due to its various advantages such as biocompatibility, biodegradability and osteoconductive properties. In this paper, an assessment of the potential of a developed innovative production process of 3D solid and dense chitosan-based products for biomedical applications is performed and presented. Therefore, it starts with a brief explanation of the technology, highlighting its main features. Then, several potential applications and their markets were identified and assessed. After choosing a primary application and market, its potential as well as its uncertainties and risks were identified. A business model suggesting how to materialize the value from the application was sketched. After that, a brief description of the market as well as the identification of the main competitors and their distinctive features was made. The supply chain analysis and the go-to-market strategy were the following steps. In the end, a final recommendation based on the assessment of the information was prepared.