995 resultados para Sowing date


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The appropriate chemical management of cover crops in no-tillage aims to obtain greater benefits with its employment in agricultural systems. The objective of this study was to assess upland rice yield as affected by the previous summer crop, species and desiccation timing of cover crops by glyphosate. Sown cover crops were sown (November 2007), followed by rice in half of the experimental area and soybean in the other half (November 2008). After the harvesting of these crops, the same cover crops were sown again (March 2009) and followed by upland rice in the total area (November 2009). The experiment consisted of the combination of five cover crops (fallow, Panicum maximum, Brachiaria ruziziensis, B. brizantha and Pennisetum glaucum), four desiccation timings (30, 20, 10 and 0 days before rice sowing), and two antecedents of the summer crop (rice or soybean) under no-tillage system (NTS), plus two control treatments at conventional tillage system (CTS). Cover crops significantly affect rice grain yield and its components. There is a significant tendency to highest yield when cover crop desiccation is conducted farther from the rice sowing date (from 2,577.1 kg ha-1 - desiccation at rice sowing to 3,115.30 kg ha-1 - desiccation 30 days before rice sowing). Soybean as an antecedent of summer crop allows better upland rice yield (3,754 kg ha-1) than rice as an antecedent of summer crop (2,635 kg ha-1); fallow/soybean/fallow (4,507 kg ha-1) and millet/soybean/millet (4,765 kg ha-1) rotation at no-tillage system, and incorporated fallow /soybean/ incorporated fallow (4,427 kg ha-1) at conventional tillage system allow the highest rice yield; upland rice yield is similar at no-till (3,194 kg ha-1) and till system (2,878 kg ha-1).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Soil moisture and soil temperature affect pre-harvest infection with Aspergillus flavus and production of aflatoxin. The objectives of our field research in Niger, West Africa, were to: (i) examine the effects of sowing date and irrigation treatments on pod yield, infection with A. flavus and aflatoxin concentration; and (ii) to quantify relations between infection, aflatoxin concentration and soil moisture stress. Seed of an aflatoxin susceptible peanut cv. JL24 was sown at two to four different sowing dates under four irrigation treatments (rainfed and irrigation at 7, 14 and 21 days intervals) between 1991 and 1994, giving 40 different 'environments'. Average air and soil temperatures of 28-34 degrees C were favourable for aflatoxin contamination. CROPGRO-peanut model was used to simulate the occurrence of moisture stress. The model was able to simulate yields of peanut well over the 40 environments (r(2) = 0.67). In general, early sowing produced greater pod yields, as well as less infection and lower aflatoxin concentration. There were negative linear relations between infection (r(2) = 0.62) and the average simulated fraction of extractable soil water (FESW) between flowering and harvest, and between aflatoxin concentration (r(2) = 0.54) and FESW in the last 25 days of pod-filling. This field study confirms that infection and aflatoxin concentration in peanut can be related to the occurrence of soil moisture stress during pod-filling when soil temperatures are near optimal for A. flavus. These relations could form the basis of a decision-support system to predict the risk of aflatoxin contamination in peanuts in similar environments. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

White or Guinea yam (Dioscorea rotundata), grown for its underground tubers, is an important food in West Africa. Progress in yam breeding is constrained by variable flowering behaviour, making hybridization difficult. Yam clones may be dioecious, monoecious or hermaphrodite with variable sex ratios. The proportion of plants that flower and the flowering intensity also vary with season and location. The objective of the present work was to investigate whether variation in flowering behaviour was related to factors determining rate of development (photoperiod and temperature through sowing date, location and year) or growth (cumulative solar radiation and temperature). Sex ratios, the proportion of plants that had flower buds and open flowers, and the number of flowers or spikes was recorded in one male (TDr 131) and one female (TDr 99-9) clone of white yam grown in the field in Nigeria at three locations and at different sowing dates. Clone TDr 131 was uniformly male flowering, while clone TDr 99-9 exhibited a number of sex types with gynoecious, monoecious and trimonoecious plants observed. The proportion of flowering plants was low in both clones, averaging 0.34 in clone TDr 131 and 0.13 in clone TDr 99-9. Day of vine emergence had a significant and contrasting effect on the proportion of flowering plants and on flowering intensity in the two clones. In clone TDr 131, the proportion of flowering plants and flowering intensity declined with later vine emergence at all locations (r=0.43-0.53, P<0.05), whereas in clone TDr 99-9 the proportion of flowering plants increased with later emergence (r=0.46, P<0.01). In clone TDr 131, this response was strongly associated with warmer temperatures (r=0.49-0.50; P<0.05) and greater cumulative radiation (r=0.85-0.93; P<0.001) between vine emergence and flowering, rather than photoperiod at vine emergence. This suggests that flowering behaviour in the male clone TDr 131 is strongly influenced by factors that affect growth rather than development. Clone TDr 99-9, on the other hand, exhibited no clear relations between flowering and growth or developmental factors, though the proportion of flowering plants and flowering intensity was greatest at planting dates close to the longest day and at temperatures of 25-26 degrees C. This might suggest that flowering behaviour in clone TDr 99-9 is controlled by photothermal responses.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A model was devised to describe simultaneously the grain masses of water and dry matter against thermal time during grain filling and maturation of winter wheat. The model accounted for a linear increase in water mass of duration anthesis-m(1) (end of rapid water assimilation phase) and rate a, followed by a more stable water mass until in,, after which water mass declined rapidly at rate e. Grain dry matter was described as a linear increase of rate bgf until a maximum size (maxgf) was attained at m(2).The model was fitted to plot data from weekly samples of grains taken from replicated field experiments investigating effects of grain position (apical or medial), fungicide (five contrasting treatments), sowing date (early or late), cultivar (Malacca or Shamrock) and season (2001/2002 and 2002/2003) on grain filling. The model accounted for between 83 and 99% of the variation ( 2) when fitted to data from individual plots, and between 97 and 99% when fitted to treatment means. Endosperm cell number of grains from early-sown plots in the first season were also counted. Differences in maxgf between grain positions and also between cultivars were mostly the result of effects on bgf and were empirically associated with water mass at nil. Fungicide application controlled S. tritici and powdery mildew infection, delayed flag leaf senescence, increased water mass at m(1) (wm(1)), and also increased m(2), bgf and maxgf. Fungicide effects on water mass were detected before fungicide effects on dry matter, but comparison of the effects of individual fungicide treatments showed no evidence that effects on wm(1), nor on endosperm cell numbers at about m(1), were required for fungicide effects on maxgf, (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Four experiments conducted over three seasons (2002-05) at the Crops Research Unit, University of Reading, investigated effects of canopy management of autumn sown oilseed rape (Brassica napus L. ssp. oleifera var. biennis (DC.) Metzg.) on competition with grass weeds. Emphasis was placed on the effect of the crop on the weeds. Rape canopy size was manipulated using sowing date, seed rate and the application of autumn fertilizer. Lolium multiflorum Lam., L. x boucheanum Kunth and Alopecurus myosuroides Huds. were sown as indicative grass weeds. The effects of sowing date, seed rate and autumn nitrogen on crop competitive ability were correlated with rape biomass and fractional interception of photosynthetically active radiation (PAR) by the rape floral layer, to the extent that by spring there was good evidence of crop: weed replacement. An increase in seed rate up to the highest plant densities tested increased both rape biomass and competitiveness, e.g. in 2002/3, L. multiflorum head density was reduced from 539 to 245 heads/m(2) and spikelet density from 13 170 to 5960 spikelets/m(2) when rape plant density was increased from 16 to 81 plants/m(2). Spikelets/head of Lolium spp. was little affected by rape seed rate, but the length of heads of A. myosuroides was reduced by 9 % when plant density was increased from 29-51 plants/m(2). Autumn nitrogen increased rape biomass and reduced L. multiflorum head density (415 and 336 heads/m(2) without and with autumn nitrogen, respectively) and spikelet density (9990 and 8220 spikelets/m(2) without and with autumn nitrogen, respectively). The number of spikelets/head was not significantly affected by autumn nitrogen. Early sowing could increase biomass and competitiveness, but poor crop establishment sometimes overrode the effect. Where crop and weed establishment was similar for both sowing dates, a 2-week delay (i.e. early September to mid-September) increased L. multiflorum head density from 226 to 633 heads/m(2) and spikelet density from 5780 to 15 060 spikelets/m(2).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Four experiments conducted over three seasons (2002–05) at the Crops Research Unit, University of Reading, investigated effects of canopy management of autumn sown oilseed rape (Brassica napus L. ssp. oleifera var. biennis (DC.) Metzg.) on competition with grass weeds. Emphasis was placed on the effect of the crop on the weeds. Rape canopy size was manipulated using sowing date, seed rate and the application of autumn fertilizer. Lolium multiflorum Lam., L.rboucheanum Kunth and Alopecurus myosuroides Huds. were sown as indicative grass weeds. The effects of sowing date, seed rate and autumn nitrogen on crop competitive ability were correlated with rape biomass and fractional interception of photosynthetically active radiation (PAR) by the rape floral layer, to the extent that by spring there was good evidence of crop: weed replacement. An increase in seed rate up to the highest plant densities tested increased both rape biomass and competitiveness, e.g. in 2002/3, L. multiflorum head density was reduced from 539 to 245 heads/m2 and spikelet density from 13 170 to 5960 spikelets/m2 when rape plant density was increased from 16 to 81 plants/m2. Spikelets/head of Lolium spp. was little affected by rape seed rate, but the length of heads of A. myosuroides was reduced by 9%when plant density was increased from 29–51 plants/m2. Autumn nitrogen increased rape biomass and reduced L. multiflorum head density (415 and 336 heads/m2 without and with autumn nitrogen, respectively) and spikelet density (9990 and 8220 spikelets/m2 without and with autumn nitrogen, respectively). The number of spikelets/head was not significantly affected by autumn nitrogen. Early sowing could increase biomass and competitiveness, but poor crop establishment sometimes overrode the effect. Where crop and weed establishment was similar for both sowing dates, a 2-week delay (i.e. early September to mid-September) increased L. multiflorum head density from 226 to 633 heads/m2 and spikelet density from 5780 to 15 060 spikelets/m2.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Four experiments conducted over three seasons (2002-05) at the Crops Research Unit, University of Reading, investigated effects of canopy management of autumn sown oilseed rape (Brassica napus L. ssp. oleifera var. biennis (DC.) Metzg.) on competition with grass weeds. Emphasis was placed on the effect of the crop on the weeds. Rape canopy size was manipulated using sowing date, seed rate and the application of autumn fertilizer. Lolium multiflorum Lam., L. x boucheanum Kunth and Alopecurus myosuroides Huds. were sown as indicative grass weeds. The effects of sowing date, seed rate and autumn nitrogen on crop competitive ability were correlated with rape biomass and fractional interception of photosynthetically active radiation (PAR) by the rape floral layer, to the extent that by spring there was good evidence of crop: weed replacement. An increase in seed rate up to the highest plant densities tested increased both rape biomass and competitiveness, e.g. in 2002/3, L. multiflorum head density was reduced from 539 to 245 heads/m(2) and spikelet density from 13 170 to 5960 spikelets/m(2) when rape plant density was increased from 16 to 81 plants/m(2). Spikelets/head of Lolium spp. was little affected by rape seed rate, but the length of heads of A. myosuroides was reduced by 9 % when plant density was increased from 29-51 plants/m(2). Autumn nitrogen increased rape biomass and reduced L. multiflorum head density (415 and 336 heads/m(2) without and with autumn nitrogen, respectively) and spikelet density (9990 and 8220 spikelets/m(2) without and with autumn nitrogen, respectively). The number of spikelets/head was not significantly affected by autumn nitrogen. Early sowing could increase biomass and competitiveness, but poor crop establishment sometimes overrode the effect. Where crop and weed establishment was similar for both sowing dates, a 2-week delay (i.e. early September to mid-September) increased L. multiflorum head density from 226 to 633 heads/m(2) and spikelet density from 5780 to 15 060 spikelets/m(2).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Temperature is one of the most prominent environmental factors that determine plant growth, devel- opment, and yield. Cool and moist conditions are most favorable for wheat. Wheat is likely to be highly vulnerable to further warming because currently the temperature is already close to or above optimum. In this study, the impacts of warming and extreme high temperature stress on wheat yield over China were investigated by using the general large area model (GLAM) for annual crops. The results showed that each 1±C rise in daily mean temperature would reduce the average wheat yield in China by about 4.6%{5.7% mainly due to the shorter growth duration, except for a small increase in yield at some grid cells. When the maximum temperature exceeded 30.5±C, the simulated grain-set fraction declined from 1 at 30.5±C to close to 0 at about 36±C. When the total grain-set was lower than the critical fractional grain-set (0.575{0.6), harvest index and potential grain yield were reduced. In order to reduce the negative impacts of warming, it is crucial to take serious actions to adapt to the climate change, for example, by shifting sowing date, adjusting crop distribution and structure, breeding heat-resistant varieties, and improving the monitoring, forecasting, and early warning of extreme climate events.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Com o objetivo de avaliar o desempenho de quatro genótipos de soja-hortaliça, em dois anos agrícolas, foi instalado um ensaio, em área da UNESPFCAV, Campus de Jaboticabal-SP. O delineamento experimental adotado foi de blocos casualizados, com quatro genótipos e cinco repetições, para cada ano agrícola. Cada parcela experimental foi constituída por quatro linhas de plantio, com 3 m de comprimento, dispostas no espaçamento de 0,10 m entre plantas e 0,60 m nas entrelinhas, sendo consideradas para avaliação 20 plantas por parcela, das duas linhas centrais. As sementes foram semeadas em bandejas de poliestireno expandido de 128 células, contendo substrato Plantmax Hortaliças®. O transplante ocorreu dez dias após a semeadura, sendo que o solo já estava devidamente preparado, conforme recomendações para a cultura. A colheita foi realizada quando as vagens estavam em estádio reprodutivo R6. Avaliaram-se os genótipos: JLM003; JLM010; JLM018 e CNPSoI quanto às características: altura de inserção da primeira vagem, número médio de vagens por planta, número médio de sementes por vagem, produção de vagens por planta, massa fresca de 100 sementes e produtividade estimada de grãos imaturos. de acordo com os resultados obtidos, concluiu-se que, dentre os genótipos avaliados, JLM003, JLM010 e CNPSoI foram os mais produtivos, e quando semeados em dezembro apresentam produtividades maiores do que quando semeados em setembro.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

No sistema irrigado por aspersão, o uso de cultivares e épocas adequadas de semeadura podem possibilitar a obtenção de altos níveis de produtividade do arroz de terras altas. No entanto, são escassas as informações sobre a exportação de nutrientes pelos grãos dessa cultura nesse sistema de produção. Este trabalho objetivou avaliar o efeito da época de semeadura na produtividade e exportação de nutrientes pelos grãos de cultivares de arroz de terras altas (IAC 201, IAC 202, Carajás, CNA 7800 e CNA 7801), irrigados por aspersão. Os experimentos foram desenvolvidos nos anos agrícolas de 1995/1996 e 1996/1997, em Latossolo Vermelho distrófico, em Selvíria (MS). As semeaduras foram realizadas no início da segunda quinzena de setembro, outubro, novembro, dezembro, janeiro e fevereiro, de cada ano. Foi utilizado o delineamento de blocos ao acaso, em esquema de parcela subdividida, com quatro repetições. A época de semeadura influenciou a produtividade de grãos e exportação de nutrientes pelos grãos. A semeadura realizada em novembro proporcionou maior exportação de nutrientes por promover produtividades mais elevadas. em épocas de semeadura antecipada (setembro), com a cultivar Carajás, a produtividade e a exportação de nutrientes foram superiores às demais; já nas semeaduras de outubro a dezembro, a cultivar CNA 7801 se destacou. No sistema irrigado por aspersão, é possível semeadura em fevereiro com produtividade acima 3.900 kg ha-1 utilizando as cultivares IAC 201 e Carajás.