998 resultados para Sound interaction


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Commercial interventions seeking to promote fruit and vegetable consumption by encouraging preschool- and school-aged children to engage with foods with ‘all their senses’ are increasing in number. We review the efficacy of such sensory interaction programmes and consider the components of these that are likely to encourage food acceptance. Repeated exposure to a food's flavour has robust empirical support in terms of its potential to increase food intake. However, children are naturally reluctant to taste new or disliked foods, and parents often struggle to provide sufficient taste opportunities for these foods to be adopted into the child's diet. We therefore explore whether prior exposure to a new food's non-taste sensory properties, such as its smell, sound, appearance or texture, might facilitate the food's introduction into the child's diet, by providing the child with an opportunity to become partially familiar with the food without invoking the distress associated with tasting it. We review the literature pertaining to the benefits associated with exposure to foods through each of the five sensory modalities in turn. We conclude by calling for further research into the potential for familiarisation with the visual, olfactory, somaesthetic and auditory properties of foods to enhance children's willingness to consume a variety of fruits and vegetables.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Swallowing dynamics involves the coordination and interaction of several muscles and nerves which allow correct food transport from mouth to stomach without laryngotracheal penetration or aspiration. Clinical swallowing assessment depends on the evaluator's knowledge of anatomic structures and of neurophysiological processes involved in swallowing. Any alteration in those steps is denominated oropharyngeal dysphagia, which may have many causes, such as neurological or mechanical disorders. Videofluoroscopy of swallowing is presently considered to be the best exam to objectively assess the dynamics of swallowing, but the exam needs to be conducted under certain restrictions, due to patient's exposure to radiation, which limits periodical repetition for monitoring swallowing therapy. Another method, called cervical auscultation, is a promising new diagnostic tool for the assessment of swallowing disorders. The potential to diagnose dysphagia in a noninvasive manner by assessing the sounds of swallowing is a highly attractive option for the dysphagia clinician. Even so, the captured sound has an amount of noise, which can hamper the evaluator's decision. In that way, the present paper proposes the use of a filter to improve the quality of audible sound and facilitate the perception of examination. The wavelet denoising approach is used to decompose the noisy signal. The signal to noise ratio was evaluated to demonstrate the quantitative results of the proposed methodology. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An axisymmetric, elastic pipe is filled with an incompressible fluid and is immersed in a second, coaxial rigid pipe which contains the same fluid. A pressure pulse in the outer fluid annulus deforms the elastic pipe which invokes a fluid motion in the fluid core. It is the aim of this study to investigate streaming phenomena in the core which may originate from such a fluid-structure interaction. This work presents a numerical solver for such a configuration. It was developed in the OpenFOAM software environment and is based on the Arbitrary Lagrangian Eulerian (ALE) approach for moving meshes. The solver features a monolithic integration of the one-dimensional, coupled system between the elastic structure and the outer fluid annulus into a dynamic boundary condition for the moving surface of the fluid core. Results indicate that our configuration may serve as a mechanical model of the Tullio Phenomenon (sound-induced vertigo).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A high-fidelity virtual tool for the numerical simulation of low-velocity impact damage in unidirectional composite laminates is proposed. A continuum material model for the simulation of intraply damage phenomena is implemented in a numerical scheme as a user subroutine of the commercially available Abaqus finite element package. Delaminations are simulated using of cohesive surfaces. The use of structured meshes, aligned with fiber directions allows the physically-sound simulation of matrix cracks parallel to fiber directions, and their interaction with the development of delaminations. The implementation of element erosion criteria and the application of intraply and interlaminar friction allow for the simulation of fiber splits and their entanglement, which in turn results in permanent indentation in the impacted laminate. It is shown that this simulation strategy gives sound results for impact energies bellow and above the Barely Visible Impact Damage threshold, up to laminate perforation conditions

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Experiments with simulators allow psychologists to better understand the causes of human errors and build models of cognitive processes to be used in human reliability assessment (HRA). This paper investigates an approach to task failure analysis based on patterns of behaviour, by contrast to more traditional event-based approaches. It considers, as a case study, a formal model of an air traffic control (ATC) system which incorporates controller behaviour. The cognitive model is formalised in the CSP process algebra. Patterns of behaviour are expressed as temporal logic properties. Then a model-checking technique is used to verify whether the decomposition of the operator's behaviour into patterns is sound and complete with respect to the cognitive model. The decomposition is shown to be incomplete and a new behavioural pattern is identified, which appears to have been overlooked in the analysis of the data provided by the experiments with the simulator. This illustrates how formal analysis of operator models can yield fresh insights into how failures may arise in interactive systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Research on aphasia has struggled to identify apraxia of speech (AoS) as an independent deficit affecting a processing level separate from phonological assembly and motor implementation. This is because AoS is characterized by both phonological and phonetic errors and, therefore, can be interpreted as a combination of deficits at the phonological and the motoric level rather than as an independent impairment. We apply novel psycholinguistic analyses to the perceptually phonological errors made by 24 Italian aphasic patients. We show that only patients with relative high rate (>10%) of phonetic errors make sound errors which simplify the phonology of the target. Moreover, simplifications are strongly associated with other variables indicative of articulatory difficulties - such as a predominance of errors on consonants rather than vowels -but not with other measures - such as rate of words reproduced correctly or rates of lexical errors. These results indicate that sound errors cannot arise at a single phonological level because they are different in different patients. Instead, different patterns: (1) provide evidence for separate impairments and the existence of a level of articulatory planning/programming intermediate between phonological selection and motor implementation; (2) validate AoS as an independent impairment at this level, characterized by phonetic errors and phonological simplifications; (3) support the claim that linguistic principles of complexity have an articulatory basis since they only apply in patients with associated articulatory difficulties.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The impact of eliminating extraneous sound and light on students’ achievement was investigated under four conditions: Light and Sound controlled, Sound Only controlled, Light Only controlled and neither Light nor Sound controlled. Group, age and gender were the control variables. Four randomly selected groups of high school freshmen students with different backgrounds were the participants in this study. Academic achievement was the dependent variable measured on a pretest, a posttest and a post-posttest, each separated by an interval of 15 days. ANOVA was used to test the various hypotheses related to the impact of eliminating sound and light on student learning. Independent sample T tests on the effect of gender indicated a significant effect while age was non- significant. Follow up analysis indicated that sound and light are not potential sources of extraneous load when tested individually. However, the combined effect of sound and light seems to be a potential source of extrinsic load. The findings revealed that the performance of the Sound and Light controlled group was greater during the posttest and post-posttest. The overall performance of boys was greater than that of girls. Results indicated a significant interaction effect between group and gender on treatment subjects. However gender alone was non-significant. Performance of group by age had no significant interaction and age alone was non-significant in the posttest and post-posttest. Based on the results obtained sound and light combined seemed to be the potential sources of extraneous load in this type of learning environment. This finding supports previous research on the effect of sound and light on learning. The findings of this study show that extraneous sound and light have an impact on learning. These findings can be used to design better learning environments. Such environments can be achieved with different electric lighting and sound systems that provide optimal color rendering, low glare, low flicker, low noise and reverberation. These environments will help people avoid unwanted distraction, drowsiness, and photosensitive behavior.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the most popular techniques for creating spatialized virtual sounds is based on the use of Head-Related Transfer Functions (HRTFs). HRTFs are signal processing models that represent the modifications undergone by the acoustic signal as it travels from a sound source to each of the listener's eardrums. These modifications are due to the interaction of the acoustic waves with the listener's torso, shoulders, head and pinnae, or outer ears. As such, HRTFs are somewhat different for each listener. For a listener to perceive synthesized 3-D sound cues correctly, the synthesized cues must be similar to the listener's own HRTFs. ^ One can measure individual HRTFs using specialized recording systems, however, these systems are prohibitively expensive and restrict the portability of the 3-D sound system. HRTF-based systems also face several computational challenges. This dissertation presents an alternative method for the synthesis of binaural spatialized sounds. The sound entering the pinna undergoes several reflective, diffractive and resonant phenomena, which determine the HRTF. Using signal processing tools, such as Prony's signal modeling method, an appropriate set of time delays and a resonant frequency were used to approximate the measured Head-Related Impulse Responses (HRIRs). Statistical analysis was used to find out empirical equations describing how the reflections and resonances are determined by the shape and size of the pinna features obtained from 3D images of 15 experimental subjects modeled in the project. These equations were used to yield “Model HRTFs” that can create elevation effects. ^ Listening tests conducted on 10 subjects show that these model HRTFs are 5% more effective than generic HRTFs when it comes to localizing sounds in the frontal plane. The number of reversals (perception of sound source above the horizontal plane when actually it is below the plane and vice versa) was also reduced by 5.7%, showing the perceptual effectiveness of this approach. The model is simple, yet versatile because it relies on easy to measure parameters to create an individualized HRTF. This low-order parameterized model also reduces the computational and storage demands, while maintaining a sufficient number of perceptually relevant spectral cues. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Into the Bends of Time is a 40-minute work in seven movements for a large chamber orchestra with electronics, utilizing real-time computer-assisted processing of music performed by live musicians. The piece explores various combinations of interactive relationships between players and electronics, ranging from relatively basic processing effects to musical gestures achieved through stages of computer analysis, in which resulting sounds are crafted according to parameters of the incoming musical material. Additionally, some elements of interaction are multi-dimensional, in that they rely on the participation of two or more performers fulfilling distinct roles in the interactive process with the computer in order to generate musical material. Through processes of controlled randomness, several electronic effects induce elements of chance into their realization so that no two performances of this work are exactly alike. The piece gets its name from the notion that real-time computer-assisted processing, in which sound pressure waves are transduced into electrical energy, converted to digital data, artfully modified, converted back into electrical energy and transduced into sound waves, represents a “bending” of time.

The Bill Evans Trio featuring bassist Scott LaFaro and drummer Paul Motian is widely regarded as one of the most important and influential piano trios in the history of jazz, lauded for its unparalleled level of group interaction. Most analyses of Bill Evans’ recordings, however, focus on his playing alone and fail to take group interaction into account. This paper examines one performance in particular, of Victor Young’s “My Foolish Heart” as recorded in a live performance by the Bill Evans Trio in 1961. In Part One, I discuss Steve Larson’s theory of musical forces (expanded by Robert S. Hatten) and its applicability to jazz performance. I examine other recordings of ballads by this same trio in order to draw observations about normative ballad performance practice. I discuss meter and phrase structure and show how the relationship between the two is fixed in a formal structure of repeated choruses. I then develop a model of perpetual motion based on the musical forces inherent in this structure. In Part Two, I offer a full transcription and close analysis of “My Foolish Heart,” showing how elements of group interaction work with and against the musical forces inherent in the model of perpetual motion to achieve an unconventional, dynamic use of double-time. I explore the concept of a unified agential persona and discuss its role in imparting the song’s inherent rhetorical tension to the instrumental musical discourse.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

French Impressionism is a term which is often used in discussing music originating in France towards the end of the nineteenth century. The term Spanish Impressionism could also be used when discussing Spanish music written by the Spanish composers who studied and worked in Paris at the same time as their French counterparts. After all, Spanish music written during this time exhibits many of the same characteristics and aesthetics as French music of the same era. This dissertation will focus on the French and Spanish composers writing during that exciting time. Musical impressionism emphasizes harmonic effects and rhythmic fluidity in the pursuit of evocative moods, sound pictures of nature or places over the formalism of structure and thematic concerns. The music of this time is highly virtuosic as well as musically demanding, since many of the composers were brilliant pianists. My three dissertation recitals concentrated on works which exhibited the many facets of impressionism as well as the technical and musical challenges. The repertoire included selections by Spanish composers Manuel de Falla, Isaac Albéniz, Enrique Granados, Joaquín Turina, and Joaquín Rodrigo and French composers Claude Debussy and Maurice Ravel. The recitals were on April 30, 2013, February 23, 2014 and October 11, 2015. They included solo piano works by Granados and Albéniz, vocal works by Debussy, Ravel, de Falla, Turina and Rodrigo, piano trios by Granados and Turina, instrumental duos by Debussy, Ravel and de Falla, and a two-piano work of Debussy transcribed by Ravel. All three recitals were held in Gildenhorn Recital Hall at the University of Maryland and copies of this dissertation and recordings of each recital may be found through the Digital Repository at the University of Maryland (DRUM).