921 resultados para Sonic hedgehog signaling
Resumo:
The Sonic Hedgehog (Shh) signalling pathway plays a central role in the development of the skin and hair follicle and is a major determinant of skin tumorigenesis, most notably of basal cell carcinoma (BCC). Various mouse models involving either ablation or overexpression of key members of the Shh signalling pathway display a range of skin tumours. To further examine the role of Shh in skin development. we have overexpressed Shh in a subset of interfollicular basal cells from 12.5 dpc under the control of the human keratin 1 (HK1) promoter. The HK1-Shh transgenic mice display a range of skin anomalies, including highly pigmented inguinal lesions and regions of alopecia. The most striking hair follicle phenotype is a suppression in embryonic follicle development between 14.0 and 19.0 dpc, resulting in a complete absence of guard, awl, and auchene hair fibres. These data indicate that alternative signals are responsible for the development of different hair follicles and point to a major role of Shh signalling in the morphogenesis of guard, awl, and auchene hair fibres. Through a comparison with other mouse models, the characteristics of the HK1-Shh transgenic mice suggest that the precise timing and site of Shh expression are key in dictating the resultant skin and tumour phenotype. 2003 Elsevier Inc. All rights reserved.
Resumo:
Sonic Hedgehog is a secreted morphogen involved in patterning a wide range of structures in the developing embryo. Disruption of the Hedgehog signalling cascade leads to a number of developmental disorders and plays a key role in the formation of a range of human cancers. The identification of genes regulated by Hedgehog is crucial to understanding how disruption of this pathway leads to neoplastic transformation. We have used a Sonic Hedgehog (Shh) responsive mouse cell line, C3H/10T1/2, to provide a model system for hedgehog target gene discovery. Following activation of cell cultures with Shh, RNA was used to interrogate microarrays to investigate downstream transcriptional consequences of hedgehog stimulation. As a result 11 target genes have been identified, seven of which are induced (Thrombomodulin, GILZ, BF-2, Nr4a1, IGF2, PMP22, LASP1) and four of which are repressed (SFRP-1, SFRP-2, Mip1-gamma, Amh) by Shh. These targets have a diverse range of putative functions and include transcriptional regulators and molecules known to be involved in regulating cell growth or apoptosis. The corroboration of genes previously implicated in hedgehog signalling, along with the finding of novel targets, demonstrates both the validity and power of the C3H/10T1/2 system for Shh target gene discovery.
Resumo:
Several studies have demonstrated that although the structure of the adult and larval zebrafish caudal fin is different, there are similarities at the cellular and molecular level that turn larval zebrafish fin fold a useful model to study the basic principles of regeneration. In this process, while the essential role for Hedgehog (Hh) signaling is well established in the adult zebrafish caudal fin system, its involvement in juvenile tissue regeneration is still unknown. The aim of this Master thesis was therefore to evaluate the contribution of the Hh signaling pathway to the larval zebrafish fin fold regeneration process. Accordingly, we analyzed the expression of several Hh signaling components through in situ hybridization. Here, we showed that several of these genes are effectively expressed in the larval regenerating fin tissue, suggesting a role for Hh signaling also during larval regeneration. However, divergence in the regulation of few Hh signaling components appears to exist between the adult and larval zebrafish fin regeneration processes. Nevertheless, similarly to adult caudal fin regeneration, when Hh signaling was blocked, by using cyclopamine, the larval fin fold regenerative outgrowth is severely impaired. Since larval zebrafish fin fold is ciliated, and primary cilia are closely related to Hh signaling regulation in vertebrate systems, we further addressed the role of primary cilia during larval fin fold regeneration process. To this end, we used the zebrafish iguana mutant, in which primary cilia are not formed, to study the modulation of Hh signaling expression during larval fin fold regeneration in the absence of primary cilia. Here, we found that several genes were expressed with a delay, coincident with the delay in the mutant fin fold regeneration observed in previous work. We show that Hh signaling in the fin fold is crucial to promote cell proliferation. When Hh signaling is blocked using cyclopamine there is a strong blockage of cell proliferation and regeneration is also blocked. Surprisingly, in iguana mutants where Hh signaling is impaired but not totally blocked, cell proliferation is not detected but regeneration still occurs. This raises the question about the requirement of cell proliferation in larvae fin fold regeneration. By blocking the cell cycle using aphidicolin we demonstrate that cell proliferation is not necessary for zebrafish larvae fin fold regeneration.
Resumo:
The inner ear is responsible for the perception of motion and sound in vertebrates. Its functional unit, the sensory patch, contains mechanosensory hair cells innervated by sensory neurons from the statoacoustic ganglion (SAG) that project to the corresponding nuclei in the brainstem. How hair cells develop at specific positions, and how otic neurons are sorted to specifically innervate each endorgan and to convey the extracted information to the hindbrain is not completely understood. In this work, we study the generation of macular sensory patches and investigate the role of Hedgehog (Hh) signaling in the production of their neurosensory elements. Using zebrafish transgenic lines to visualize the dynamics of hair cell and neuron production, we show that the development of the anterior and posterior maculae is asynchronic, suggesting they are independently regulated. Tracing experiments demonstrate the SAG is topologically organized in two different neuronal subpopulations, which are spatially segregated and innervate specifically each macula. Functional experiments identify the Hh pathway as crucial in coordinating the production of hair cells in the posterior macula, and the formation of its specific innervation. Finally, gene expression analyses suggest that Hh influences the balance between different SAG neuronal subpopulations. These results lead to a model in which Hh orients functionally the development of inner ear towards an auditory fate in all vertebrate species.
PPARbeta/delta regulates paneth cell differentiation via controlling the hedgehog signaling pathway.
Resumo:
BACKGROUND & AIMS: All 4 differentiated epithelial cell types found in the intestinal epithelium derive from the intestinal epithelial stem cells present in the crypt unit, in a process whose molecular clues are intensely scrutinized. Peroxisome proliferator-activated receptor beta (PPARbeta) is a nuclear hormone receptor activated by fatty acids and is highly expressed in the digestive tract. However, its function in intestinal epithelium homeostasis is understood poorly. METHODS: To assess the role of PPARbeta in the small intestinal epithelium, we combined various cellular and molecular approaches in wild-type and PPARbeta-mutant mice. RESULTS: We show that the expression of PPARbeta is particularly remarkable at the bottom of the crypt of the small intestine where Paneth cells reside. These cells, which have an important role in the innate immunity, are strikingly affected in PPARbeta-null mice. We then show that Indian hedgehog (Ihh) is a signal sent by mature Paneth cells to their precursors, negatively regulating their differentiation. Importantly, PPARbeta acts on Paneth cell homeostasis by down-regulating the expression of Ihh, an effect that can be mimicked by cyclopamine, a known inhibitor of the hedgehog signaling pathway. CONCLUSIONS: We unraveled the Ihh-dependent regulatory loop that controls mature Paneth cell homeostasis and its modulation by PPARbeta. PPARbeta currently is being assessed as a drug target for metabolic diseases; these results reveal some important clues with respect to the signals controlling epithelial cell fate in the small intestine.
Resumo:
Le morphogène Sonic hedgehog (Shh) est requis pour le guidage axonal des neurones commissuraux lors du développement de la moelle épinière, phénomène impliquant des événements de réorganisation du cytosquelette d’actine. Bien qu’il soit généralement admis que le cytosquelette d’actine soit régulé via les petites GTPases de la famille Rho, un effet de Shh sur ces protéines n’a jamais été observé dans aucun contexte physiologique. Nous démontrons que Shh active les petites GTPases Rac1 et Cdc42 et que cette activation est rapide et donc, compatible avec les effets de guidage induits par Shh sur les neurones commissuraux. En parallèle, nous avons étudié l’activation de la protéine Boc, qui est un récepteur de Shh requis pour le guidage axonal des neurones commissuraux. Ces résultats contribuent à raffiner notre compréhension de la transduction cellulaire induite par Shh lors du guidage axonal des neurones commissuraux.
Resumo:
Chez les animaux à vision binoculaire, la vision tridimensionnelle permet la perception de la profondeur grâce à l'intégration de l'information visuelle en provenance des deux yeux. La première étape de cette intégration est rendue possible anatomiquement par la ségrégation des axones controlatéraux et ipsilatéraux des cellules ganglionnaires de la rétine (CGR) au niveau du chiasma optique. Les axones controlatéraux croisent la ligne médiane au chiasma en route du nerf optique vers le cerveau. À l’inverse, les axones ipsilatéraux s'écartent du chiasma et continuent dans le tractus optique ipsilatéral, en évitant la ligne médiane vers leurs cibles cérébrales. Les mécanismes moléculaires à la base de ce phénomène ne sont pas complètement compris. Les études présentées dans cette thèse montrent que Boc, le récepteur de Sonic Hedgehog (Shh) dans le guidage axonal, est enrichi dans les CGRs ipsilatérales de la rétine en développement. La présence de Shh sur la ligne médiane, et le mode d'expression complémentaire du récepteur nous ont conduit à émettre l'hypothèse que Shh pourrait repousser les axones ipsilatéraux au niveau du chiasma en activant le récepteur Boc. Conformément à cette hypothèse, nous avons constaté que seulement les CGR exprimant Boc se rétractent in vitro en réponse à Shh et que cette réponse est perdue dans les CGR mutantes pour Boc. In vivo, nous démontrons que Boc est requis pour la ségrégation normale des axones ipsilatéraux au niveau du chiasma optique et, inversement, que l'expression ectopique de Boc dans les CGR contralatérales empêche leurs axones de traverser le chiasma optique. Dans l’ensemble, ces résultats suggèrent que Shh repousse les axones ipsilatéraux au niveau du chiasma optique par son récepteur Boc. Cette première partie de notre travail identifie un nouveau couple ligand-récepteur requis pour la ségrégation des axones au niveau du chiasma optique. Une interaction moléculaire impliquée dans cette ségrégation implique l’éphrine-B2 et ses récepteurs EphB (EphB1). Dans la deuxième partie de notre travail, nous montrons, in vivo, en utilisant des souris doubles et quadruples mutantes pour les récepteurs Boc, EphB1 ou les trois récepteurs EphB, que l’abrogation des deux voies de signalisation Shh et éphrine-B2 conduit à l'absence de projections ipsilatérales. Ceci indique que les deux signalisations agissent de façon indépendante dans des voies parallèles. De manière intéressante, ces souris mutantes ont été utilisées comme modèle génétique pour démontrer des défauts dans la perception de la profondeur de champs chez des animaux dépourvus de projections visuelles ipsilatérales. Ainsi, les travaux présentés dans cette thèse démontrent pour la première fois que la formation des projections rétiniennes ipsilatérales est essentielle à l’établissement de la vision binoculaire et dépend des voies induites par les récepteurs d’éphrine-B2 et Shh.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Several biological events are controlled by Hedgehog (Hh) signaling, including osteoblast phenotype development. This study aimed at evaluating the gene expression profile of human mesenchymal stem cells (hMSCs) treated with the Hh agonist, purmorphamine, focusing on Hh signaling and osteoblast differentiation. hMSCs from bone marrow were cultured in non-osteogenic medium with or without purmorphamine (2 mu M) for periods of up to 14 days. Purmorphamine up-regulated gene expression of the mediators of Hh pathway, SMO, PTCH1, GLI1, and GLI2. The activation of Hh pathway by purmorphamine increased the expression of several genes (e.g., RUNX2 and BMPs) related to osteogenesis. Our results indicated that purmorphamine triggers Hh signaling pathway in hMSCs, inducing an increase in the expression of a set of genes involved in the osteoblast differentiation program. Thus, we conclude that Hh is a crucial pathway in the commitment of undifferentiated cells to the osteoblast lineage. J. Cell. Biochem. 113: 204208, 2012. (C) 2011 Wiley Periodicals, Inc.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
Resumo:
Proper organ patterning depends on a tight coordination between cell proliferation and differentiation. The patterning of Drosophila retina occurs both very fast and with high precision. This process is driven by the dynamic changes in signaling activity of the conserved Hedgehog (Hh) pathway, which coordinates cell fate determination, cell cycle and tissue morphogenesis. Here we show that during Drosophila retinogenesis, the retinal determination gene dachshund (dac) is not only a target of the Hh signaling pathway, but is also a modulator of its activity. Using developmental genetics techniques, we demonstrate that dac enhances Hh signaling by promoting the accumulation of the Gli transcription factor Cubitus interruptus (Ci) parallel to or downstream of fused. In the absence of dac, all Hh-mediated events associated to the morphogenetic furrow are delayed. One of the consequences is that, posterior to the furrow, dac- cells cannot activate a Roadkill-Cullin3 negative feedback loop that attenuates Hh signaling and which is necessary for retinal cells to continue normal differentiation. Therefore, dac is part of an essential positive feedback loop in the Hh pathway, guaranteeing the speed and the accuracy of Drosophila retinogenesis.
Resumo:
Context: GLI2 is a transcription factor downstream in Sonic Hedgehog signaling, acting early in ventral forebrain and pituitary development. GLI2 mutations were reported in patients with holoprosencephaly (HPE) and pituitary abnormalities. Objective: The aim was to report three novel frameshift/nonsense GLI2 mutations and the phenotypic variability in the three families. Setting: The study was conducted at a university hospital. Patients and Methods: The GLI2 coding region of patients with isolated GH deficiency (IGHD) or combined pituitary hormone deficiency was amplified by PCR using intronic primers and sequenced. Results: Three novel heterozygous GLI2 mutations were identified: c. 2362_2368del p. L788fsX794 (family 1), c. 2081_2084del p. L694fsX722 (family 2), and c. 1138 G > T p. E380X (family 3). All predict a truncated protein with loss of the C-terminal activator domain. The index case of family 1 had polydactyly, hypoglycemia, and seizures, and GH, TSH, prolactin, ACTH, LH, and FSH deficiencies. Her mother and seven relatives harboring the same mutation had polydactyly, including two uncles with IGHD and one cousin with GH, TSH, LH, and FSH deficiencies. In family 2, a boy had cryptorchidism, cleft lip and palate, and GH deficiency. In family 3, a girl had hypoglycemia, seizures, excessive thirst and polyuria, and GH, ACTH, TSH, and antidiuretic hormone deficiencies. Magnetic resonance imaging of four patients with GLI2 mutations and hypopituitarism showed a hypoplastic anterior pituitary and an ectopic posterior pituitary lobe without HPE. Conclusion: We describe three novel heterozygous frameshift or nonsense GLI2 mutations, predicting truncated proteins lacking the activator domain, associated with IGHD or combined pituitary hormone deficiency and ectopic posterior pituitary lobe without HPE. These phenotypes support partial penetrance, variable polydactyly, midline facial defects, and pituitary hormone deficiencies, including diabetes insipidus, conferred by heterozygous frameshift or nonsense GLI2 mutations. (J Clin Endocrinol Metab 95: E384-E391, 2010)