920 resultados para Solid Oxide Fuel Cell


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the first half of this thesis, a new robotic instrument called a scanning impedance probe is presented that can acquire electrochemical impedance spectra in automated fashion from hundreds of thin film microelectrodes with systematically varied properties. Results from this instrument are presented for three catalyst compositions that are commonly considered for use in state-of-the-art solid oxide fuel cell cathodes. For (La0.8Sr0.2)0.95MnO3+δ (LSM), the impedance spectra are well fit by a through-the-film reaction pathway. Transport rates are extracted, and the surface activity towards oxygen reduction is found to be correlated with the number of exposed grain boundary sites, suggesting that grain boundaries are more surface-active than grains. For La0.5Sr0.5CoO3-δ (LSC), the surface activity degrades ~50x initially and then stabilizes at a comparable activity to that of previously measured Ba0.5Sr0.5Co0.8Fe0.2O3-δ films. For Sr0.06Nb0.06Bi1.87O3 (SNB), an example of a doped bismuth oxide, the activity of the metal-SNB boundary is measured.

In the second half of this thesis, SrCo0.9Nb0.1O3-δ is selected as a case study of perovskites containing Sr and Co, which are the most active oxygen reduction catalysts known. Several bulk properties are measured, and synchrotron data are presented that provide strong evidence of substantial cobalt-oxygen covalency at high temperatures. This covalent bonding may be the underlying source of the high surface activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Minimization of undesirable temperature gradients in all dimensions of a planar solid oxide fuel cell (SOFC) is central to the thermal management and commercialization of this electrochemical reactor. This article explores the effective operating variables on the temperature gradient in a multilayer SOFC stack and presents a trade-off optimization. Three promising approaches are numerically tested via a model-based sensitivity analysis. The numerically efficient thermo-chemical model that had already been developed by the authors for the cell scale investigations (Tang et al. Chem. Eng. J. 2016, 290, 252-262) is integrated and extended in this work to allow further thermal studies at commercial scales. Initially, the most common approach for the minimization of stack's thermal inhomogeneity, i.e., usage of the excess air, is critically assessed. Subsequently, the adjustment of inlet gas temperatures is introduced as a complementary methodology to reduce the efficiency loss due to application of excess air. As another practical approach, regulation of the oxygen fraction in the cathode coolant stream is examined from both technical and economic viewpoints. Finally, a multiobjective optimization calculation is conducted to find an operating condition in which stack's efficiency and temperature gradient are maximum and minimum, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a mechanistic modeling methodology to predict both the percolation threshold and effective conductivity of infiltrated Solid Oxide Fuel Cell (SOFC) electrodes. The model has been developed to mirror each step of the experimental fabrication process. The primary model output is the infiltrated electrode effective conductivity which provides results over a range of infiltrate loadings that are independent of the chosen electronically conducting material. The percolation threshold is utilized as a valuable output data point directly related to the effective conductivity to compare a wide range of input value choices. The predictive capability of the model is demonstrated by favorable comparison to two separate published experimental studies, one using strontium molybdate and one using La0.8Sr0.2FeO3-δ as infiltrate materials. Effective conductivities and percolation thresholds are shown for varied infiltrate particle size, pore size, and porosity with the infiltrate particle size having the largest impact on the results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a mechanistic modeling methodology to predict both the percolation threshold and effective conductivity of infiltrated Solid Oxide Fuel Cell (SOFC) electrodes. The model has been developed to mirror each step of the experimental fabrication process. The primary model output is the infiltrated electrode effective conductivity which provides results over a range of infiltrate loadings that are independent of the chosen electronically conducting material. The percolation threshold is utilized as a valuable output data point directly related to the effective conductivity to compare a wide range of input value choices. The predictive capability of the model is demonstrated by favorable comparison to two separate published experimental studies, one using strontium molybdate and one using La0.8Sr0.2FeO3-delta as infiltrate materials. Effective conductivities and percolation thresholds are shown for varied infiltrate particle size, pore size, and porosity with the infiltrate particle size having the largest impact on the results. (C) 2013 The Electrochemical Society. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Solid Oxide Fuel Cell (SOFC) is a class of fuel cells that is capable of generating very high levels of power at high temperatures. SOFCs are used for stationary power generation and as Combined Heat and Power (CHP) systems. In spite of all the beneficial features of the SOFC, the propagation of ripple currents, due to nonlinear loads, is a challenging problem, as it interferes with the physical operation of the fuel cell. The purpose of this thesis is to identify the cause of ripples and attempt to eliminate or reduce the ripple propagation through the use of Active Power Filters (APF). To this end, a systematic approach to modeling the fuel cell to account for its nonlinear behavior in the presence of current ripples is presented. A model of a small fuel cell power system which consists of a fuel cell, a DC-DC converter, a single-phase inverter and a nonlinear load is developed in MATLAB/Simulink environment. The extent of ripple propagation, due to variations in load magnitude and frequency, are identified using frequency spectrum analysis. In order to reduce the effects of ripple propagation, an APF is modeled to remove ripples from the DC fuel cell current. The emphasis of this thesis is based on the idea that small fuel cell systems cannot implement large passive filters to cancel the effects of ripple propagation and hence, the compact APF topology effectively protects the fuel cell from propagating ripples and improves its electrical performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work NiO/3mol% Y2O3-ZrO2 (3YSZ) and NiO/8mol% Y2O3-ZrO2 (8YSZ) hollow fibers were prepared by phase-inversion. The effect of different kinds of YSZ (3YSZ and 8YSZ) on the porosity, electrical conductivity, shrinkage and flexural strength of the hollow fibers were systematically evaluated. When compared with Ni-8YSZ the porosity and shrinkage of Ni-3YSZ hollow fibers increases while the electrical conductivity decreases, while at the same time also exhibiting enhanced flexural strength. Single cells with Ni-3YSZ and Ni-8YSZ hollow fibers as the supported anode were successfully fabricated showing maximum power densities of 0.53 and 0.67Wcm-2 at 800°C, respectively. Furthermore, in order to improve the cell performance, a Ni-8YSZ anode functional layer was added between the electrolyte and Ni-YSZ hollow fiber. Here enhanced peak power densities of 0.79 and 0.73Wcm-2 were achieved at 800°C for single cells with Ni-3YSZ and Ni-8YSZ hollow fibers, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A 10 mol%Sc2O3, 1 mol%CeO2 stabilized-ZrO2 (SSZ) powder was successfully prepared using the sol-gel method. Subsequent SSZ electrolyte pellets were prepared by tape casting technique and sintered at 1400 °C, 1450 °C, 1500 °C, 1550 °C and 1600 °C. These were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS). SSZ showed a pure cubic phase after sintering, the grain size of SSZ increased with the increase of sintering temperature. The SSZ sintered at 1550 °C showed the highest ion conductivity. The maximum power densities of Ni-SSZ/SSZ/La0.8Sr0.2MnO3-δ (LSM)-SSZ single cells sintered at 1550 °C were 0.18, 0.36, 0.51 and 0.72 W cm-2 at 650, 700, 750 and 800 °C, respectively. The polarization resistance (Rp) of the single cell attained 0.201 Ω cm2 at 800 °C.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, Sr2Fe1.5Mo0.4Nb0.1O6-δ (SFMNb)-xSm0.2Ce0.8O2-δ (SDC) (x = 0, 20, 30, 40, 50 wt%) composite cathode materials were synthesized by a one-pot combustion method to improve the electrochemical performance of SFMNb cathode for intermediate temperature solid oxide fuel cells (IT-SOFCs). The fabrication of composite cathodes by adding SDC to SFMNb is conducive to providing extended electrochemical reaction zones for oxygen reduction reactions (ORR). X-ray diffraction (XRD) demonstrates that SFMNb is chemically compatible with SDC electrolytes at temperature up to 1100 °C. Scanning electron microscope (SEM) indicates that the SFMNb-SDC composite cathodes have a porous network nanostructure as well as the single phase SFMNb. The conductivity and thermal expansion coefficient of the composite cathodes decrease with the increased content of SDC, while the electrochemical impedance spectra (EIS) exhibits that SFMNb-40SDC composite cathode has optimal electrochemical performance with low polarization resistance (Rp) on the La0.9Sr0.1Ga0.8Mg0.2O3 electrolyte. The Rp of the SFMNb-40SDC composite cathode is about 0.047 Ω cm2 at 800 °C in air. A single cell with SFMNb-40SDC cathode also displays favorable discharge performance, whose maximum power density is 1.22 W cm-2 at 800 °C. All results indicate that SFMNb-40SDC composite material is a promising cathode candidate for IT-SOFCs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A laboratory setup was designed and put into operation for the development of solid oxide fuel cells (SOFCs). The whole project consisted of the preparation of the component materials: anode, cathode and electrolyte, and the buildup of a hydrogen leaking-free sample chamber with platinum leads and current collectors for measuring the electrochemical properties of single SOFCs. Several anode-supported single SOFCs of the type (ZrO(2):Y(2)O(3)+NiO) thick anode/(ZrO(2):Y(2)O(3)) thin electrolyte/(La(0.65)Sr(0.35)MnO(3)+ZrO(2):Y(2)O(3)) thin cathode have been prepared and tested at 700 and 800 degrees C after in situ H(2) anode reduction. The main results show that the slurry-coating method resulted in single-cells with good reproducibility and reasonable performance, suggesting that this method can be considered for fabrication of SOFCs. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nowadays increasing fuel prices and upcoming pollutant emission regulations are becoming a growing concern for the shipping industry worldwide. While fuel prices will keep rising in future years, the new International Convention for the Prevention of Pollution from Ships (MARPOL) and Sulphur Emissions Control Areas (SECA) regulations will forbid ships to use heavy fuel oils at certain situations. To fulfil with these regulations, the next step in the marine shipping business will comprise the use of cleaner fuels on board as well as developing new propulsion concept. In this work a new conceptual marine propulsion system is developed, based on the integration of diesel generators with fuel cells in a 2850 metric tonne of deadweight platform supply vessel. The efficiency of the two 250 kW methanol-fed Solid Oxide Fuel Cell (SOFC) system installed on board combined with the hydro dynamically optimized design of the hull of the ship will allow the ship to successfully operate at certain modes of operation while notably reduce the pollutant emissions to the atmosphere. Besides the cogeneration heat obtained from the fuel cell system will be used to answer different heating needs on board the vessel

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rolls-Royce fuel cell systems is developing megawatt scale power systems based on solid oxide fuel cell technology. The hybrid design promises to meet challenging energy efficiency, cost and performance targets in a grid friendly fashion. Analysis and testing to date indicate that those targets can be met and enable a wealth of fuel cell applications to meet customer and existing grid and modern grid requirements. Working with a global development team, a series of laboratory tests and evaluations are completed and future field test and evaluation and demonstration planned.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La0.8Sr0.2Ga0.8Mg0.2O3-δ (LSGM), a promising electrolyte material for intermediate temperature solid oxide fuel cells, can be sintered to a fully dense state by a flash-sintering technique. In this work, LSGM is sintered by the current-limiting flash-sintering process at 690°C under an electric field of 100 V cm-1, in comparison with up to 1400°C or even higher temperature in conventional furnace sintering. The resultant LSGM samples are investigated by scanning electron microscopy, X-ray diffraction, and electrochemical impedance spectroscopy. The SEM images exhibit well-densified microstructures while XRD results show that the perovskite structure after flash-sintering does not changed. EIS results show that the conductivity of LSGM sintered by the current-limiting flash-sintering process increases with sintering current density value. The conductivity of samples sintered at 120 mA mm-2 reaches 0.049 σ cm-1 at 800°C, which is approximate to the value of conventional sintered LSGM samples at 1400°C. Additionally, the flash-sintering process is interpreted by Joule heating theory. Therefore, the current-limiting flash-sintering technique is proved to be an energy-efficient and eligible approach for the densification of LSGM and other materials requiring high sintering temperature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cobalt-free composite cathodes consisting of Pr0.6Sr0.4FeO 3-δ -xCe0.9Pr0.1O 2-δ (PSFO-xCPO, x = 0-50 wt%) have been synthesized using a one-pot method. X-ray diffraction, scanning electron microscopy, thermal expansion coefficient, conductivity, and polarization resistance (R P ) have been used to characterize the PSFO-xCPO cathodes. Furthermore the discharge performance of the Ni-SSZ/SSZ/GDC/PSFO-xCPO cells has been measured. The experimental results indicate that the PSFO-xCPO composite materials fully consist of PSFO and CPO phases and posses a porous microstructure. The conductivity of PSFO-xCPO decreases with the increase of CPO content, but R P of PSFO-40CPO shows the smallest value amongst all the samples. The power density of single cells with a PSFO-40CPO composite cathode is significantly improved compared with that of the PSFO cathode, exhibiting 0.43, 0.75, 1.08 and 1.30 W cm-2 at 650, 700, 750 and 800 °C, respectively. In addition, single cells with the PSFO-40CPO composite cathode show a stable performance with no obvious degradation over 100 h when operating at 750 °C.