872 resultados para Solid Fermentation


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Enzyme production is a growing field in biotechnology and increasing attention has been devoted to the solid-state fermentation (SSF) of lignocellulosic biomass for production of industrially relevant lignocellulose deconstruction enzymes, especially manganese-peroxidase (MnP), which plays a crucial role in lignin degradation. However, there is a scarcity of studies regarding extraction of the secreted metabolities that are commonly bound to the fermented solids, preventing their accurate detection and limiting recovery efficiency. In the present work, we assessed the effectiveness of extraction process variables (pH, stirring rate, temperature, and extraction time) on recovery efficiency of manganese-peroxidase (MnP) obtained by SSF of eucalyptus residues using Lentinula edodes using statistical design of experiments. The results from this study indicated that of the variables studied, pH was the most significant (p < 0.05%) parameter affecting MnP recovery yield, while temperature, extraction time, and stirring rate presented no statistically significant effects in the studied range. The optimum pH for extraction of MnP was at 4.0-5.0, which yielded 1500-1700 IU kg (1) of enzyme activity at extraction time 4-5 h, under static condition at room temperature. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The maximum O-2 uptake by Rhizopus oligosporus grown in a 200 litre rotating drum bioreactor at 0.5 rpm ranged from 6.7 to 7.6 mmol per min per kg initial dry substrate (IDS), for runs done with 4 baffles each 17 cm wide, and 12 baffles each 5 cm wide. Without baffles, the maximum O-2 uptake rate at 5 rpm was 6.9 mmol/(min.kg IDS), compared to 5.1 mmol/(min.kg IDS) obtained at 0.5 rpm. Therefore O-2 supply is adequate in rotating drum bioreactors as long as slumping flow regimes of the substrate bed are avoided.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Aspergillus foetidus ACR I 3996 (=FRR 3558) and three strains of Aspergillus niger ACM 4992 (=ATCC 9142), ACM 4993 (=ATCC 10577), ACM 4994 (=ATCC 12846) were compared for the production of citric acid from pineapple peel in solid-state fermentation. A. niger ACM 4992 produced the highest amount of citric acid, with a yield of 19.4 g of citric acid per 100 g of dry fermented pineapple waste under optimum conditions, representing a yield of 0.74 g citric acid/g sugar consumed. Optimal conditions were 65% (w/w) initial moisture content, 3% (v/w) methanol, 30 degrees C, an unadjusted initial pH of 3.4, a particle size of 2 mm and 5 ppm Fe2+. Citric acid production was best in flasks, with lower yields being obtained in tray and rotating drum bioreactors.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The development of large-scale solid-stale fermentation (SSF) processes is hampered by the lack of simple tools for the design of SSF bioreactors. The use of semifundamental mathematical models to design and operate SSF bioreactors can be complex. In this work, dimensionless design factors are used to predict the effects of scale and of operational variables on the performance of rotating drum bioreactors. The dimensionless design factor (DDF) is a ratio of the rate of heat generation to the rate of heat removal at the time of peak heat production. It can be used to predict maximum temperatures reached within the substrate bed for given operational variables. Alternatively, given the maximum temperature that can be tolerated during the fermentation, it can be used to explore the combinations of operating variables that prevent that temperature from being exceeded. Comparison of the predictions of the DDF approach with literature data for operation of rotating drums suggests that the DDF is a useful tool. The DDF approach was used to explore the consequences of three scale-up strategies on the required air flow rates and maximum temperatures achieved in the substrate bed as the bioreactor size was increased on the basis of geometric similarity. The first of these strategies was to maintain the superficial flow rate of the process air through the drum constant. The second was to maintain the ratio of volumes of air per volume of bioreactor constant. The third strategy was to adjust the air flow rate with increase in scale in such a manner as to maintain constant the maximum temperature attained in the substrate bed during the fermentation. (C) 2000 John Wiley & Sons, Inc.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study describes the production of xylanases from Aspergillus niveus, A. niger, and A. ochraceus under solid-state fermentation using agro-industrial residues as substrates. Enzyme production was improved using a mixture of wheat bran and yeast extract or peptone. When a mixture of corncob and wheat bran was used, xylanase production from A. niger and A. ochraceus increased by 18%. All cultures were incubated at 30 A degrees C at 70-80% relative humidity for 96 h. For biobleaching assays, 10 or 35 U of xylanase/g dry cellulose pulp were incubated at pH 5.5 for 1 or 2 h, at 55 A degrees C. The delignification efficiency was 20%, the brightness (percentage of ISO) increased two to three points and the viscosity was maintained confirming the absence of cellulolytic activity. These results indicated that the use of xylanases could help to reduce the amount of chlorine compounds used in cellulose pulp treatment.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The filamentous fungus A. phoenicis produced high levels of beta-D-fructofuranosidase (FFase) when grown for 72 hrs under Solid-State Fermentation (SSF), using soy bran moistened with tap water (1:0.5 w/v) as substrate/carbon source. Two isoforms (I and II) were obtained, and FFase II was purified 18-fold to apparent homogeneity with 14% recovery. The native molecular mass of the glycoprotein (12% of carbohydrate content) was 158.5 kDa with two subunits of 85 kDa estimated by SDS-PAGE. Optima of temperature and pH were 55 degrees C and 4.5. The enzyme was stable for more than 1 hr at 50 degrees C and was also stable in a pH range from 7.0 to 8.0. FFase II retained 80% of activity after storage at 4 degrees C by 200 hrs. Dichroism analysis showed the presence of random and beta-sheet structure. A. phoenicis FFase II was activated by Mn(2+), Mg(2+) and Co(2+), and inhibited by Cu(2+), Hg(2+) and EDTA. The enzyme hydrolyzed sucrose, inulin and raffinose. K(d) and V(max) values were 18 mM and 189 U/mg protein using sucrose as substrate.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Two methods were compared for determining the concentration of penetrative biomass during growth of Rhizopus oligosporus on an artificial solid substrate consisting of an inert gel and starch as the sole source of carbon and energy. The first method was based on the use of a hand microtome to make sections of approximately 0.2- to 0.4-mm thickness parallel to the substrate surface and the determination of the glucosamine content in each slice. Use of glucosamine measurements to estimate biomass concentrations was shown to be problematic due to the large variations in glucosamine content with mycelial age. The second method was a novel method based on the use of confocal scanning laser microscopy to estimate the fractional volume occupied by the biomass. Although it is not simple to translate fractional volumes into dry weights of hyphae due to the lack of experimentally determined conversion factors, measurement of the fractional volumes in themselves is useful for characterizing fungal penetration into the substrate. Growth of penetrative biomass in the artificial model substrate showed two forms of growth with an indistinct mass in the region close to the substrate surface and a few hyphae penetrating perpendicularly to the surface in regions further away from the substrate surface. The biomass profiles against depth obtained from the confocal microscopy showed two linear regions on log-linear plots, which are possibly related to different oxygen availability at different depths within the substrate. Confocal microscopy has the potential to be a powerful tool in the investigation of fungal growth mechanisms in solid-state fermentation. (C) 2003 Wiley Periodicals, Inc.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The agroindustrial residues including plant tissues rich in polyphenols were explored for microbial production of potent phenolics under solid state fermentation processes. The fungal strains capable of hydrolyzing tannin-rich materials were isolated from Mexican semidesert zones. These microorganisms have been employed to release potent phenolic antioxidants during the solid state fermentation of different materials (pomegranate peels, pecan nut shells, creosote bush and tar bush). This chapter includes the critical parameters for antioxidants production from selective microbes. Technical aspects of the microbial fermentation of antioxidants have also been discussed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Dissertação de mestrado em Bioengenharia

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Agricultural wastes from cactus Cereus peruvianus and Opuntia ficus indica were investigated for protein production by solid substrate fermentation. Firstly, the polyelectrolytes were extracted and used in water cleaning as auxiliary of flocculation and coagulation. The remaining fibrous material and peels were used as substrate for fermentation with Aspergillus niger. Glucoamylase and cellulase were the main enzymes produced. Amino acids were determined by HPLC and protein by Lowry's method. After 120 hours of fermentation the protein increased by 12.8%. Aspartic acid (1.27%), threonine (0.97%), glutamic acid (0.88%), valine (0.70%), serine (0.68%), arginine (0.82%), and phenylalanine (0.51%) were the principal amino acids produced.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Abstract The use of agroindustrial residues is an economical solution to industrial biotechnology. Coffee husk and pulp are abounding residues from coffee industry which can be used as substrates in solid state fermentation process, thus allowing a liberation and increase in the phenolic compound content with high added value. By employing statistical design, initial moisture content, pH value in the medium, and the incubation temperature were evaluated, in order to increase the polyphenol content in a process of solid state fermentation by Penicillium purpurogenum. The main phenolic compounds identified through HPLC in fermented coffee residue were chlorogenic acid, caffeic acid, and rutin. Data obtained through HPLC with the radical absorbance capacity assay suggest the fermented coffee husk and pulp extracts potential as a source of phenolic acids and flavonoids. Results showed good perspectives when using P. purpurogenum strain to enhance the liberation of phenolic compounds in coffee residues.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Use of inert supports have been recommended for SSF in on ar to overcome its inherent problems and efforts are being made to search for newer and better materials to act as inert solid supports lidoo et al, 1982; Zhu et al, 1994).In the present study an attempt is made to produce L-glutaminase, which is industrially and therapeutically impo rtant, from marine bacteria under solid state fermentation using natura.l. inert and mixed substrates with a view to develop an ideal bioprocess for its large scale production.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Bacillus subtilis CBTK 106, isolated from banana wastes, produced high titres of a-amylase when banana fruit stalk was used as substrate in a solid-state fermentation system. The e¤ects of initial moisture content, particle size, cooking time and temperature, pH, incubation temperature, additional nutrients, inoculum size and incubation period on the production of a- amylase were characterised. A maximum yield of 5 345 000 U mg~1 min~1 was recorded when pretreated banana fruit stalk (autoclaved at 121 ¡C for 60 min) was used as substrate with 70% initial moisture content, 400 lm particle size, an initial pH of 7.0, a temperature of 35 ¡C, and additional nutrients (ammonium sulphate/sodium nitrate at 1.0%, beef extract/peptone at 0.5%, glucose/sucrose/starch/maltose at 0.1% and potassium chloride/sodium chloride at 1.0%) in the medium, with an inoculum-to-substrate ratio of 10% (v/w) for 24 h. The enzyme yield was 2.65-fold higher with banana fruit stalk medium compared to wheat bran