924 resultados para Solar energy, solar collector, solar heater, low cost
Resumo:
In this paper, we have investigated a region of direct stable orbits around the Moon, whose stability is related to the H2 Family of periodic orbits and to the quasi-periodic orbits that oscillate around them. The stability criteria adopted was that the path did not escape from the Moon during an integration period of 1000 days (remaining with negative two-body Moon-probe orbital energy during this period). Considering the three-dimensional four-body Sun-Earth-Moon-probe problem, we investigated the evolution of the size of the stability region, taking into account the eccentricity of the Earth's orbit, the eccentricity and inclination of the Moon's orbit, and the solar radiation pressure on the probe. We also investigated the evolution of the region's size and its location by varying the inclination of the probe's initial osculating orbit relative to the Moon's orbital plane between 0 degrees and 180 degrees. The size of the stability region diminishes; nevertheless, it remains significant for 0 <= i <= 25 degrees and 35 degrees <= i <= 45 degrees. The orbits of this region could be useful for missions by space vehicles that must remain in orbit around the Moon for periods of up to 1000 days, requiring low maintenance costs. (c) 2005 COSPAR. Published by Elsevier Ltd. All rights reserved.
Resumo:
In order to reduce the costs of crystalline silicon solar cells, low-cost silicon materials like upgraded metallurgical grade (UMG) silicon are investigated for the application in the photovoltaic (PV) industry. Conventional high-purity silicon is made by cost-intensive methods, based on the so-called Siemens process, which uses the reaction to form chlorosilanes and subsequent several distillation steps before the deposition of high-purity silicon on slim high-purity silicon rods. UMG silicon in contrast is gained from metallurgical silicon by a rather inexpensive physicochemical purification (e.g., acid leaching and/or segregation). However, this type of silicon usually contains much higher concentrations of impurities, especially 3d transition metals like Ti, Fe, and Cu. These metals are extremely detrimental in the electrically active part of silicon solar cells, as they form recombination centers for charge carriers in the silicon band gap. This is why simple purification techniques like gettering, which can be applied between or during solar cell process steps, will play an important role for such low-cost silicon materials. Gettering in general describes a process, whereby impurities are moved to a place or turned into a state, where they are less detrimental to the solar cell. Hydrogen chloride (HCl) gas gettering in particular is a promising simple and cheap gettering technique, which is based on the reaction of HCl gas with transition metals to form volatile metal chloride species at high temperatures.rnThe aim of this thesis was to find the optimum process parameters for HCl gas gettering of 3d transition metals in low-cost silicon to improve the cell efficiency of solar cells for two different cell concepts, the standard wafer cell concept and the epitaxial wafer equivalent (EpiWE) cell concept. Whereas the former is based on a wafer which is the electrically active part of the solar cell, the latter uses an electrically inactive low-cost silicon substrate with an active layer of epitaxially grown silicon on top. Low-cost silicon materials with different impurity grades were used for HCl gas gettering experiments with the variation of process parameters like the temperature, the gettering time, and the HCl gas concentration. Subsequently, the multicrystalline silicon neighboring wafers with and without gettering were compared by element analysis techniques like neutron activation analysis (NAA). It was demonstrated that HCl gas gettering is an effective purification technique for silicon wafers, which is able to reduce some 3d transition metal concentrations by over 90%. Solar cells were processed for both concepts which could demonstrate a significant increase of the solar cell efficiency by HCl gas gettering. The efficiency of EpiWE cells could be increased by HCl gas gettering by approximately 25% relative to cells without gettering. First process simulations were performed based on a simple model for HCl gas gettering processes, which could be used to make qualitative predictions.
Resumo:
The solar irradiation that a crop receives is directly related to the physical and biological processes that affect the crop. However, the assessment of solar irradiation poses certain problems when it must be measured through fruit inside the canopy of a tree. In such cases, it is necessary to check many test points, which usually requires an expensive data acquisition system. The use of conventional irradiance sensors increases the cost of the experiment, making them unsuitable. Nevertheless, it is still possible to perform a precise irradiance test with a reduced price by using low-cost sensors based on the photovoltaic effect. The aim of this work is to develop a low-cost sensor that permits the measurement of the irradiance inside the tree canopy. Two different technologies of solar cells were analyzed for their use in the measurement of solar irradiation levels inside tree canopies. Two data acquisition system setups were also tested and compared. Experiments were performed in Ademuz (Valencia, Spain) in September 2011 and September 2012 to check the validity of low-cost sensors based on solar cells and their associated data acquisition systems. The observed difference between solar irradiation at high and low positions was of 18.5% ± 2.58% at a 95% confidence interval. Large differences were observed between the operations of the two tested sensors. In the case of a-Si cells based mini-modules, an effect of partial shadowing was detected due to the larger size of the devices, the use of individual c-Si cells is recommended over a-Si cells based mini-modules.
Resumo:
"February 1980."
Resumo:
"Work Performed Under Contract No. AC02-77CH00178."
Resumo:
"August 1980."
Resumo:
A solar alternative system for water heating is presented. It work on a thermosiphon, consisting of one or two alternative collectors and a water storage tank also alternative, whose main purpose is to socialize the use of energy mainly to be used by people of low income. The collectors were built from the use of pets bottles, cans of beer and soft drinks and tubes of PVC, ½ " and the thermal reservoirs from a drum of polyethylene used for storage of water and garbage placed inside cylinder of fiber glass and EPS ground between the two surfaces. Such collectors are formed by three elements: pet bottles, cans and tubes absorbers. The heating units, which form the collector contains inside the cans that can be closed, in original form or in the form of plate. The collectors have an absorber grid formed by eight absorbers PVC tube, connected through connections at T of the same material and diameter. It will be presented data of the thermal parameters which demonstrate the efficiency of the heating system proposed. Relative aspects will be boarded also the susceptibility the thermal degradation and for UV for the PVC tubes. It will be demonstrated that this alternative heating system, which has as its main feature low cost, presents thermal, economic and materials viabilities
Resumo:
The crop diseases sometimes are related to the irradiance that the crop receives. When an experiment requires the measurement of the irradiance, usually it results in an expensive data acquisition system. If it is necessary to check many test points, the use of traditional sensors will increase the cost of the experiment. By using low cost sensors based in the photovoltaic effect, it is possible to perform a precise test of irradiance with a reduced price. This work presents an experiment performed in Ademuz (Valencia, Spain) during September of 2011 to check the validity of low cost sensors based on solar cells.
Projeto de Sistema Fotovoltaico Para as Naves Industriais da Zona Econômica Especial de Luanda-Bengo
Resumo:
Com os preços do barril de petróleo a atingir níveis nunca antes atingidos, cada vez mais há uma maior sensibilização para a importância das fontes renováveis de energia, não só pelo seu baixo custo de exploração, mas também pela ausência de poluição ambiental. A integração de sistemas fotovoltaicos nas edificações, começa a ter uma expressão significativa especialmente por ser uma forma de produção renovável. Pelo seu carácter renovável, vai ao encontro de objetivos ambientais, e é também desejável pelo seu carácter distribuído, produção próxima do consumo, evitando perdas de transporte e utilizando o recurso disponível no consumidor. No presente projeto é feita uma breve descrição do atual sistema elétrico angolano, nomeadamente o seu potencial, capacidade instalada, e perspetivas futuras de desenvolvimento do mesmo. Com uma perspetiva introdutória são abordadas as energias renováveis especialmente a energia fotovoltaica, terminando com as diferentes formas de produção e tecnologias existentes. São apresentados diferentes equipamentos, que, com as inúmeras combinações poderão vir a constituir um sistema técnico e financeiramente viável. Devido aos vários cenários possíveis (combinações entre equipamentos), foram usadas como instrumentos de apoio ferramentas informáticas que permitem o dimensionamento de sistemas fotovoltaicos, análise de compatibilidades, e simulação do seu funcionamento. Foram dimensionadas quatro opções de sistemas fotovoltaicos, a instalar nas naves industriais da Zona Económica Especial Luanda-Bengo, para uma mesma área de cobertura, seguido de um estudo económico, onde é feito uma comparação custo/benefício dos vários sistemas.
Resumo:
This thesis presents a low cost non-intrusive home energy monitor built on top of Non-Intrusive Load Monitoring (NILM) concepts and techniques. NILM solutions are already considered low cost alternatives to the big majority of existing commercial energy monitors but the goal here is to make its cost even lower by using a mini netbook as a whole in one solution. The mini netbook is installed in the homes main circuit breaker and computes power consumption by reading current and voltage from the built-in sound card. At the same time, feedback to the users is provided using the 11’’ LCD screen as well as other built-in I/O modules. Our meter is also capable of detecting changes in power and tries to find out which appliance lead to that change and it is being used as part of an eco-feedback platform that was build to study the long terms of energy eco-feedback in individuals. In this thesis the steps that were taken to come up with such a system are presented, from the basics of AC power measurements to the implementation of an event detector and classifier that was used to disaggregate the power load. In the last chapter results from some validation tests that have been performed are presented in order to validate the experiment. It is believed that such a system will not only be important as an energy monitor, but also as an open system than can be easily changed to accommodate and test new or existing nonintrusive load monitoring techniques.
Resumo:
"ILENR/BE-86-01."--Cover.
Resumo:
Dissertação de mestrado em Construção e Reabilitação Sustentáveis
Resumo:
T cells move randomly ("random-walk"), a characteristic thought to be integral to their function. Using migration assays and time-lapse microscopy, we found that CD8+ T cells lacking the lymph node homing receptors CCR7 and CD62L migrate more efficiently in transwell assays, and that these same cells are characterized by a high frequency of cells exhibiting random crawling activity under culture conditions mimicking the interstitial/extravascular milieu, but not when examined on endothelial cells. To assess the energy efficiency of cells crawling at a high frequency, we measured mRNA expression of genes key to mitochondrial energy metabolism (peroxisome proliferator-activated receptor gamma coactivator 1beta [PGC-1beta], estrogen-related receptor alpha [ERRalpha], cytochrome C, ATP synthase, and the uncoupling proteins [UCPs] UCP-2 and -3), quantified ATP contents, and performed calorimetric analyses. Together these assays indicated a high energy efficiency of the high crawling frequency CD8+ T-cell population, and identified differentially regulated heat production among nonlymphoid versus lymphoid homing CD8+ T cells.