994 resultados para Solar Plants


Relevância:

40.00% 40.00%

Publicador:

Resumo:

System Advisor Model is a software tool develped by National Renewable Laboratory (NREL), Department Of Energy, USA to design Solar Power Plants.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The supercritical Rankine power cycle offers a net improvement in plant efficiency compared with a subcritical Rankine cycle. For fossil power plants the minimum supercritical steam turbine size is about 450MW. A recent study between Sandia National Laboratories and Siemens Energy, Inc., published on March 2013, confirmed the feasibility of adapting the Siemens turbine SST-900 for supercritical steam in concentrated solar power plants, with a live steam conditions 230-260 bar and output range between 140-200 MWe. In this context, this analysis is focused on integrating a line-focus solar field with a supercritical Rankine power cycle. For this purpose two heat transfer fluids were assessed: direct steam generation and molten salt Hitec XL. To isolate solar field from high pressure supercritical water power cycle, an intermediate heat exchanger was installed between linear solar collectors and balance of plant. Due to receiver selective coating temperature limitations, turbine inlet temperature was fixed 550ºC. The design-point conditions were 550ºC and 260 bar at turbine inlet, and 165 MWe Gross power output. Plant performance was assessed at design-point in the supercritical power plant (between 43-45% net plant efficiency depending on balance of plantconfiguration), and in the subcritical plant configuration (~40% net plant efficiency). Regarding the balance of plant configuration, direct reheating was adopted as the optimum solution to avoid any intermediate heat exchanger. One direct reheating stage between high pressure turbine and intermediate pressure turbine is the common practice; however, General Electric ultrasupercritical(350 bar) fossil power plants also considered doubled-reheat applications. In this study were analyzed heat balances with single-reheat, double-reheat and even three reheating stages. In all cases were adopted the proper reheating solar field configurations to limit solar collectors pressure drops. As main conclusion, it was confirmed net plant efficiency improvements in supercritical Rankine line-focus (parabolic or linear Fresnel) solar plant configurations are mainly due to the following two reasons: higher number of feed-water preheaters (up to seven)delivering hotter water at solar field inlet, and two or even three direct reheating stages (550ºC reheating temperature) in high or intermediate pressure turbines. However, the turbine manufacturer should confirm the equipment constrains regarding reheating stages and number of steam extractions to feed-water heaters.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Linear Fresnel collectors are identified as a technology that should play a main role in order to reduce cost of Concentrating Solar Power. An optical and thermal analysis of the different blocks of the solar power plant is carried out, where Fresnel arrays are compared with the most extended linear technology: parabolic trough collectors. It is demonstrated that the optical performance of Fresnel array is very close to that of PTC, with similar values of maximum flux intensities. In addition, if the heat carrier fluid flows in series by the tubes of the receiver, relatively high thermal efficiencies are achieved. Thus, an annual solar to electricity efficiency of 19% is expected, which is similar to the state of the art in PTCs; this is done with a reduction of costs, thanks to lighter structures, that drives to an estimation of LCOE of around 6.5 c€/kWh.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

"Prepared for the U.S. Dept. of Energy, under contract DE-AC04-76-DP00789."

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We assess the feasibility of hybrid solar-biomass power plants for use in India in various applications including tri-generation, electricity generation and process heat. To cover this breadth of scenarios we analyse, with the help of simulation models, case studies with peak thermal capacities ranging from 2 to 10 MW. Evaluations are made against technical, financial and environmental criteria. Suitable solar multiples, based on the trade-offs among the various criteria, range from 1 to 2.5. Compared to conventional energy sources, levelised energy costs are high - but competitive in comparison to other renewables such as photovoltaic and wind. Long payback periods for hybrid plants mean that they cannot compete directly with biomass-only systems. However, a 1.2-3.2 times increase in feedstock price will result in hybrid systems becoming cost competitive. Furthermore, in comparison to biomass-only, hybrid operation saves up to 29% biomass and land with an 8.3-24.8 $/GJ/a and 1.8-5.2 ¢/kWh increase in cost per exergy loss and levelised energy cost. Hybrid plants will become an increasingly attractive option as the cost of solar thermal falls and feedstock, fossil fuel and land prices continue to rise. In the foreseeable future, solar will continue to rely on subsidies and it is recommended to subsidise preferentially tri-generation plants. © 2012 Elsevier Ltd.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This thesis examined solar thermal collectors for use in alternative hybrid solar-biomass power plant applications in Gujarat, India. Following a preliminary review, the cost-effective selection and design of the solar thermal field were identified as critical factors underlying the success of hybrid plants. Consequently, the existing solar thermal technologies were reviewed and ranked for use in India by means of a multi-criteria decision-making method, the Analytical Hierarchy Process (AHP). Informed by the outcome of the AHP, the thesis went on to pursue the Linear Fresnel Reflector (LFR), the design of which was optimised with the help of ray-tracing. To further enhance collector performance, LFR concepts incorporating novel mirror spacing and drive mechanisms were evaluated. Subsequently, a new variant, termed the Elevation Linear Fresnel Reflector (ELFR) was designed, constructed and tested at Aston University, UK, therefore allowing theoretical models for the performance of a solar thermal field to be verified. Based on the resulting characteristics of the LFR, and data gathered for the other hybrid system components, models of hybrid LFR- and ELFR-biomass power plants were developed and analysed in TRNSYS®. The techno-economic and environmental consequences of varying the size of the solar field in relation to the total plant capacity were modelled for a series of case studies to evaluate different applications: tri-generation (electricity, ice and heat), electricity-only generation, and process heat. The case studies also encompassed varying site locations, capacities, operational conditions and financial situations. In the case of a hybrid tri-generation plant in Gujarat, it was recommended to use an LFR solar thermal field of 14,000 m2 aperture with a 3 tonne biomass boiler, generating 815 MWh per annum of electricity for nearby villages and 12,450 tonnes of ice per annum for local fisheries and food industries. However, at the expense of a 0.3 ¢/kWh increase in levelised energy costs, the ELFR increased saving of biomass (100 t/a) and land (9 ha/a). For solar thermal applications in areas with high land cost, the ELFR reduced levelised energy costs. It was determined that off-grid hybrid plants for tri-generation were the most feasible application in India. Whereas biomass-only plants were found to be more economically viable, it was concluded that hybrid systems will soon become cost competitive and can considerably improve current energy security and biomass supply chain issues in India.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The PhD project addresses the potential of using concentrating solar power (CSP) plants as a viable alternative energy producing system in Libya. Exergetic, energetic, economic and environmental analyses are carried out for a particular type of CSP plants. The study, although it aims a particular type of CSP plant – 50 MW parabolic trough-CSP plant, it is sufficiently general to be applied to other configurations. The novelty of the study, in addition to modeling and analyzing the selected configuration, lies in the use of a state-of-the-art exergetic analysis combined with the Life Cycle Assessment (LCA). The modeling and simulation of the plant is carried out in chapter three and they are conducted into two parts, namely: power cycle and solar field. The computer model developed for the analysis of the plant is based on algebraic equations describing the power cycle and the solar field. The model was solved using the Engineering Equation Solver (EES) software; and is designed to define the properties at each state point of the plant and then, sequentially, to determine energy, efficiency and irreversibility for each component. The developed model has the potential of using in the preliminary design of CSPs and, in particular, for the configuration of the solar field based on existing commercial plants. Moreover, it has the ability of analyzing the energetic, economic and environmental feasibility of using CSPs in different regions of the world, which is illustrated for the Libyan region in this study. The overall feasibility scenario is completed through an hourly analysis on an annual basis in chapter Four. This analysis allows the comparison of different systems and, eventually, a particular selection, and it includes both the economic and energetic components using the “greenius” software. The analysis also examined the impact of project financing and incentives on the cost of energy. The main technological finding of this analysis is higher performance and lower levelized cost of electricity (LCE) for Libya as compared to Southern Europe (Spain). Therefore, Libya has the potential of becoming attractive for the establishment of CSPs in its territory and, in this way, to facilitate the target of several European initiatives that aim to import electricity generated by renewable sources from North African and Middle East countries. The analysis is presented a brief review of the current cost of energy and the potential of reducing the cost from parabolic trough- CSP plant. Exergetic and environmental life cycle assessment analyses are conducted for the selected plant in chapter Five; the objectives are 1) to assess the environmental impact and cost, in terms of exergy of the life cycle of the plant; 2) to find out the points of weakness in terms of irreversibility of the process; and 3) to verify whether solar power plants can reduce environmental impact and the cost of electricity generation by comparing them with fossil fuel plants, in particular, Natural Gas Combined Cycle (NGCC) plant and oil thermal power plant. The analysis also targets a thermoeconomic analysis using the specific exergy costing (SPECO) method to evaluate the level of the cost caused by exergy destruction. The main technological findings are that the most important contribution impact lies with the solar field, which reports a value of 79%; and the materials with the vi highest impact are: steel (47%), molten salt (25%) and synthetic oil (21%). The “Human Health” damage category presents the highest impact (69%) followed by the “Resource” damage category (24%). In addition, the highest exergy demand is linked to the steel (47%); and there is a considerable exergetic demand related to the molten salt and synthetic oil with values of 25% and 19%, respectively. Finally, in the comparison with fossil fuel power plants (NGCC and Oil), the CSP plant presents the lowest environmental impact, while the worst environmental performance is reported to the oil power plant followed by NGCC plant. The solar field presents the largest value of cost rate, where the boiler is a component with the highest cost rate among the power cycle components. The thermal storage allows the CSP plants to overcome solar irradiation transients, to respond to electricity demand independent of weather conditions, and to extend electricity production beyond the availability of daylight. Numerical analysis of the thermal transient response of a thermocline storage tank is carried out for the charging phase. The system of equations describing the numerical model is solved by using time-implicit and space-backward finite differences and which encoded within the Matlab environment. The analysis presented the following findings: the predictions agree well with the experiments for the time evolution of the thermocline region, particularly for the regions away from the top-inlet. The deviations observed in the near-region of the inlet are most likely due to the high-level of turbulence in this region due to the localized level of mixing resulting; a simple analytical model to take into consideration this increased turbulence level was developed and it leads to some improvement of the predictions; this approach requires practically no additional computational effort and it relates the effective thermal diffusivity to the mean effective velocity of the fluid at each particular height of the system. Altogether the study indicates that the selected parabolic trough-CSP plant has the edge over alternative competing technologies for locations where DNI is high and where land usage is not an issue, such as the shoreline of Libya.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Tese submetida à Universidade de Lisboa, Instituto Superior Técnico e aprovada em provas públicas para a obtenção do Grau de Doutor em Sistemas Sustentáveis de Energia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A luminosidade desponta como um dos fatores abióticos de maior importância no estabelecimento das plantas, podendo ocasionar alterações a nível fisiológico e anatômico, interferindo diretamente no desenvolvimento das mesmas e consequentemente, sua produtividade. O cacaueiro (Theobroma cacao – Malvaceae) possui grande interesse econômico devido à utilização de suas sementes para produção de manteiga de cacau e chocolate. Neste sentido, o objetivo deste trabalho foi comparar características fisiológicas e anatômicas de dois genótipos de cacaueiro (PH 16 e IPIRANGA 01), submetidos a diferentes condições de radiação solar de modo a inferir a respeito das condições de luminosidade mais favoráveis ao desenvolvimento dos mesmos. Foram realizadas análises de crescimento, teor de pigmentos, trocas gasosas e anatômicas caulinares e foliares. O delineamento experimental foi em Blocos casualizados (DBC), com 4 repetições em arranjo fatorial 2 x 5, constituído de dois genótipos e 5 níveis de luminosidade (0% - pleno sol -, 18%, 30%, 50% e 80% de sombreamento), totalizando 40 parcelas com 10 plantas cada. Os dados obtidos foram submetidos à análise de variância e regressão. Os resultados de crescimento indicam maior adaptação, de ambos os genótipos, em condições de irradiância alta a moderada. O índice de qualidade de Dickson demonstrou maior capacidade de sobrevivência em condições de campo a níveis altos de irradiância para o genótipo PH 16 e a níveis de irradiância moderada para IPIRANGA 01. Os teores de pigmentos fotossintetizantes de IPIRANGA 01 mostram-se mais elevados na condição de 30% de sombreamento, enquanto que, para PH 16 os maiores teores foram observados em 50% de sombreamento. Ambos os genótipos demonstraram altas taxas de A, Ci, E, A/E, A/Gs e A/Ci, sob elevadas irradiâncias, assim como adaptações anatômicas caulinares e foliares a maiores luminosidades, tais como, maior espessamento do limbo foliar, parênquima paliçádico, esponjoso, limbo foliar, epiderme adaxial e densidade estomática, além de maior densidade e frequência de elementos de vaso e espessura do xilema secundário. Os genótipos PH 16 e IPIRANGA 01 apresentaram uma grande plasticidade em relação aos diferentes níveis de irradiância, no entanto, constatou-se que PH 16 apresentou melhor desempenho sob condições de alta irradiância, como as obtidas nos tratamentos a pleno sol e 18% de sombreamento, enquanto que, IPIRANGA 01 mostrou-se mais adaptado sob sombreamento moderado, a 30% de sombra.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Mecânica

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper is on the self-scheduling for a power producer taking part in day-ahead joint energy and spinning reserve markets and aiming at a short-term coordination of wind power plants with concentrated solar power plants having thermal energy storage. The short-term coordination is formulated as a mixed-integer linear programming problem given as the maximization of profit subjected to technical operation constraints, including the ones related to a transmission line. Probability density functions are used to model the variability of the hourly wind speed and the solar irradiation in regard to a negative correlation. Case studies based on an Iberian Peninsula wind and concentrated solar power plants are presented, providing the optimal energy and spinning reserve for the short-term self-scheduling in order to unveil the coordination benefits and synergies between wind and solar resources. Results and sensitivity analysis are in favour of the coordination, showing an increase on profit, allowing for spinning reserve, reducing the need for curtailment, increasing the transmission line capacity factor. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stand alone solar powered refrigeration and water desalination, two of the most popular and sought after applications of solar energy systems, have been selected as the topic of research for the works presented in this thesis. The water desalination system based on evaporation and condensation was found to be the most suitable one to be powered by solar energy. It has been established that highoutput fast-response solar heat collectors used to achieve high rates of evaporation and reliable solar powered cooling system for faster rates of condensation are the most important factors in achieving increased outputs in solar powered desalination systems. Comprehensive reviews of Solar powered cooling/refrigeration and also water desalination techniques have been presented. In view of the fact that the Institute of Technology, Sligo has a well-established long history of research and development in the production of state of the art high-efficiency fast-response evacuated solar heat collectors it was decided to use this know how in the work described in this thesis. For this reason achieving high rates of evaporation was not a problem. It was, therefore, the question of the solar powered refrigeration that was envisaged to be used in the solar powered desalination tofacilitate rapid condensation of the evaporated water that had to be addressed first. The principles of various solar powered refrigeration techniques have also been reviewed. The first step in work on solar powered refrigeration was to successfully modify a conventional refrigerator working on Platen-Munters design to be powered by highoutput fast-response evacuated solar heat collectors. In this work, which was the first ever successful attempt in the field, temperatures as low as —19°C were achieved in the icebox. A new approach in the use of photovoltaic technology to power a conventional domestic refrigerator was also attempted. This was done by modifying a conventional domestic refrigerator to be powered by photovoltaic panels in the most efficient way. In the system developed and successfully tested in this approach, the power demand has been reduced phenomenally and it is possible to achieve 48 hours of cooling power with exposure to just 7 hours of sunshine. The successful development of the first ever multi-cycle intermittent solar powered icemaker is without doubt the most exciting breakthrough in the work described in this thesis. Output of 74.3kg of ice per module with total exposure area of 2.88 m2, or 25.73kg per m2, per day is a major improvement in comparison to about 5-6kg of ice per m2 per day reported for all the single cycle intermittent systems. This system has then become the basis for the development of a new solar powered refrigeration system with even higher output, named the “composite” system described in this thesis. Another major breakthrough associated with the works described in this thesis is the successful development and testing of the high-output water desalination system. This system that uses a combination of the high-output fast-response evacuated solar heat collectors and the multi-cycle icemaker. The system is capable of producing a maximum of 141 litres of distilled water per day per module which has an exposure area of 3.24m2, or a production rate of 43.5 litres per m2 per day. Once again when this result is compared to the reported daily output of 5 litres of desalinated water per m per day the significance of this piece of work becomes apparent. In the presentation of many of the components and systems described in this thesis CAD parametric solid modelling has been used instead of photographs to illustrate them more clearly. The multi-cycle icemaker and the high-output desalination systems are the subject of two patent applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The blue light photoreceptors phototropins (phot1 and phot2 in Arabidopsis thaliana (L.)) carry out various light responses of great adaptive value that optimize plant growth. These processes include phototropism (the bending of an organ induced by unequal light distribution), chloroplast movements, stomatal opening, leaf flattening and solar tracking. The biochemical pathways controlling these important blue light responses are just starting to be elucidated. The PHYTOCHROME KINASE SUBSTRATE (PKS1-4) proteins - the subject of this research - have recently been identified as novel phototropism signalling components. PKS1 (the founding member of this family) interacts in a same complex in vivo with phot1 and the important phot1 signalling element NON-PHOTOTROPIC HYPOCOTYL 3 (NPH3). This suggested that the PKS may act as early components of phot signalling. This work further investigates the role of this protein family during phototropin signalling Genetic experiments clearly showed that the PKS do not control chloroplast movements or stomatal opening. However, PKS2 plays a critical role with NPH3 during leaf flattening and solar tracking. Epistasis data indicated that both proteins act in phot1 and phot2 pathways, which is consistent with their in vivo interaction with both phototropins. Because phototropism, leaf flattening and solar tracking are developmental processes regulated by the hormone auxin, the role of PKS2 and NPH3 during auxin homeostasis was also investigated. Interestingly, PKS2 loss-of-function restores leaf flattening in the auxin transporter mutant aux1. Moreover, PKS2 and NPH3 are found in a same complex with AUX1 in vivo. Taken together, these results suggest that PKS2 may act with NPH3 as a connecting point between phot signalling and auxin transport. Further experiments were performed to explore the molecular mode of action of PKS2 and NPH3 in this process. The significance of these results is discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent studies on coffee (Coffea arabica L.) cultivation in agroforestry systems in Southern Brazil have shown the potential of partial shading to improve management of this crop. The objective of this work was to evaluate microclimatic conditions and their effects on coffee production of plants shaded with pigeon pea (Cajanus cajan) in comparison to unshaded ones, from May 2001 to August 2002 in Londrina, State of Paraná, Brazil. The appraised microclimatic characteristics were: global radiation, photosynthetic and radiation balance; air, leaf and soil temperatures; and soil humidity. Shading caused significant reduction in incident global solar radiation, photosynthetically active radiation and net radiation, and attenuated maximum leaf, air and soil temperatures, during the day. Shade also reduced the rate of cooling of night air and leaf temperatures, especially during nights with radiative frost. Soil moisture at 0-10 cm depth was higher under shade. The shaded coffee plants produced larger cherries due to slower maturation, resulting in larger bean size. Nevertheless, plants under shade emitted less plagiotropic branches, with smaller number of nodes per branch, and fewer nodes with fruits, resulting in a large reduction in coffee production. These results show the need to find an optimal tree density and management that do not compromise coffee production and protect against extreme temperatures.