932 resultados para Sol-gel growth


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structural evolution during sintering of compacted SnO2 sol-gel powder was investigated using nitrogen adsorption isotherm analysis. Results show that for sintering temperatures up to 400°C the samples have a fractal pore size distribution. As the sintering temperature increases, a structural rearragement occurs, allowing an increase of the efficiency of particle packing and the reduction of fractality. Above 400°C, the pore size growth associated with grain coalescence is the main structural change observed as the sintering temperature increases. © 1995.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Química - IQ

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Química - IQ

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work of thesis involves various aspects of crystal engineering. Chapter 1 focuses on crystals containing crown ether complexes. Aspects such as the possibility of preparing these materials by non-solution methods, i.e. by direct reaction of the solid components, thermal behavior and also isomorphism and interconversion between hydrates are taken into account. In chapter 2 a study is presented aimed to understanding the relationship between hydrogen bonding capability and shape of the building blocks chosen to construct crystals. The focus is on the control exerted by shape on the organization of sandwich cations such as cobalticinium, decamethylcobalticinium and bisbenzenchromium(I) and on the aggregation of monoanions all containing carboxylic and carboxylate groups, into 0-D, 1-D, 2-D and 3-D networks. Reactions conducted in multi-component molecular assemblies or co-crystals have been recognized as a way to control reactivity in the solid state. The [2+2] photodimerization of olefins is a successful demonstration of how templated solid state synthesis can efficiently synthesize unique materials with remarkable stereoselectivity and under environment-friendly conditions. A demonstration of this synthetic strategy is given in chapter 3. The combination of various types of intermolecular linkages, leading to formation of high order aggregation and crystalline materials or to a random aggregation resulting in an amorphous precipitate, may not go to completeness. In such rare cases an aggregation process intermediate between crystalline and amorphous materials is observed, resulting in the formation of a gel, i.e. a viscoelastic solid-like or liquid-like material. In chapter 4 design of new Low Molecular Weight Gelators is presented. Aspects such as the relationships between molecular structure, crystal packing and gelation properties and the application of this kind of gels as a medium for crystal growth of organic molecules, such as APIs, are also discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electroassisted encapsulation of Single-Walled Carbon Nanotubes was performed into silica matrices (SWCNT@SiO2). This material was used as the host for the potentiostatic growth of polyaniline (PANI) to yield a hybrid nanocomposite electrode, which was then characterized by both electrochemical and imaging techniques. The electrochemical properties of the SWCNT@SiO2-PANI composite material were tested against inorganic (Fe3+/Fe2+) and organic (dopamine) redox probes. It was observed that the electron transfer constants for the electrochemical reactions increased significantly when a dispersion of either SWCNT or PANI was carried out inside of the SiO2 matrix. However, the best results were obtained when polyaniline was grown through the pores of the SWCNT@SiO2 material. The enhanced reversibility of the redox reactions was ascribed to the synergy between the two electrocatalytic components (SWCNTs and PANI) of the composite material.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bone is the second most widely transplanted tissue after blood. Synthetic alternatives are needed that can reduce the need for transplants and regenerate bone by acting as active temporary templates for bone growth. Bioactive glasses are one of the most promising bone replacement/regeneration materials because they bond to existing bone, are degradable and stimulate new bone growth by the action of their dissolution products on cells. Sol-gel-derived bioactive glasses can be foamed to produce interconnected macropores suitable for tissue ingrowth, particularly cell migration and vascularization and cell penetration. The scaffolds fulfil many of the criteria of an ideal synthetic bone graft, but are not suitable for all bone defect sites because they are brittle. One strategy for improving toughness of the scaffolds without losing their other beneficial properties is to synthesize inorganic/organic hybrids. These hybrids have polymers introduced into the sol-gel process so that the organic and inorganic components interact at the molecular level, providing control over mechanical properties and degradation rates. However, a full understanding of how each feature or property of the glass and hybrid scaffolds affects cellular response is needed to optimize the materials and ensure long-term success and clinical products. This review focuses on the techniques that have been developed for characterizing the hierarchical structures of sol-gel glasses and hybrids, from atomicscale amorphous networks, through the covalent bonding between components in hybrids and nanoporosity, to quantifying open macroporous networks of the scaffolds. Methods for non-destructive in situ monitoring of degradation and bioactivity mechanisms of the materials are also included. © 2012 The Royal Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Non-doped and La-doped ZnTiO3 nanoparticles were successfully synthesized via a modified sol–gel method. The synthesized nanoparticles were structurally characterized by PXRD, UV-vis DRS, FT-IR, SEM-EDS, TEM, Raman and photoluminescence spectroscopy. The results show that doping of La into the framework of ZnTiO3 has a strong influence on the physico-chemical properties of the synthesized nanoparticles. XRD results clearly show that the non-doped ZnTiO3 exhibits a hexagonal phase at 800 °C, whereas the La-doped ZnTiO3 exhibits a cubic phase under similar experimental conditions. In spite of the fact that it has a large ionic radius, the La is efficiently involved in the evolution process by blocking the crystal growth and the cubic to hexagonal transformation in ZnTiO3. Interestingly the absorption edge of the La-doped ZnTiO3 nanoparticles shifted from the UV region to the visible region. The photocatalytic activity of the La-doped ZnTiO3 nanoparticles was evaluated for the degradation of Rhodamine B under sunlight irradiation. The optimum photocatalytic activity was obtained for 2 atom% La-doped ZnTiO3, which is much higher than that of the non-doped ZnTiO3 as well as commercial N-TiO2. A possible mechanism for the degradation of Rhodamine B over La-doped ZnTiO3 was also discussed by trapping experiments. More importantly, the reusability of these nanoparticles is high. Hence La-doped ZnTiO3 nanoparticles can be used as efficient photocatalysts for environmental applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Usually, the concepts of the Sol-Gel technique are not applied in experimental chemistry courses. This work presents a feasible experiment for chemistry instruction, which involves the synthesis of luminescent materials - Zn2SiO4, with and without Mn2+ as a dopant - by the Sol-Gel technique. The obtained materials were analyzed by scanning electron microscopy, X-Ray diffraction, IR spectroscopy and luminescence measures by UV-vis spectroscopy. The results allow the students to confirm the luminescent properties of the zinc orthosilicate luminophores as well as the structural features expected from literature data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aims of this study were to demonstrate the synthesis of an experimental glass ionomer cement (GIC) by the non-hydrolytic sol-gel method and to evaluate its biocompatibility in comparison to a conventional glass ionomer cement (Vidrion R). Four polyethylene tubes containing the tested cements were implanted in the dorsal region of 15 rats, as follows: GI - experimental GIC and GII - conventional GIC. The external tube walls was considered the control group (CG). The rats were sacrificed 7, 21 and 42 days after implant placement for histopathological analysis. A four-point (I-IV) scoring system was used to graduate the inflammatory reaction. Regarding the experimental GIC sintherization, thermogravimetric and x-ray diffraction analysis demonstrated vitreous material formation at 110oC by the sol-gel method. For biocompatibility test, results showed a moderate chronic inflammatory reaction for GI (III), severe for GII (IV) and mild for CG (II) at 7 days. After 21 days, GI presented a mild reaction (II); GII, moderate (III) and CG, mild (II). At 42 days, GI showed a mild/absent inflammatory reaction (II to I), similar to GII (II to I). CG presented absence of chronic inflammatory reaction (I). It was concluded that the experimental GIC presented mild/absent tissue reaction after 42 days, being biocompatible when tested in the connective tissue of rats.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hybrid matrices of polysiloxane-polyvinyl alcohol (POS-PVA) were prepared by sol-gel technique using different concentrations of the organic component (polyvinyl alcohol, PVA) in the synthesis medium. The goal was to prepare carriers for immobilizing enzyme by taking into consideration properties as hardness, mean pore diameter, specific surface area and pore size distribution. The matrices were activated with sodium metaperiodate to render functional groups for binding the lipase from Candida rugosa, used here as a study model. Results showed that low proportion of PVA gave POS-PVA with low surface area and pore volume, although with higher hardness. The chemical activation decreased the pore volume and increased the pore size with a decrease on the surface area of about 60-75%. The matrices for enzyme immobilization were chosen considering the best combination of high surface area and hardness. Thus, the POS-PVA prepared with 5.56 x 10(-5) M of PVA with a surface area of 123 m(2)/g and hardness of 71 HV (50 gf 30 s) was shown to be suitable to immobilize the lipase, with an immobilization yield of about 40%. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Different gelation times (4, 18, 24 and 48 h) were used for the preparation of silica sol-gel supports and encapsulated Candida rugosa lipase using tetraethoxysilane (TEOS) as precursor. The hydrophobic matrices and immobilized lipases produced were characterized with regard to pore volume and size by nitrogen adsorption (BJH method), weight loss upon heating (TGA), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), chemical composition (FTIR) and percentage of hydrolysis (POH%) of olive oil. These structural parameters were found to change with the gelation time, but no direct relation was found between the percentage of oil hydrolysis (POH%) and the gelation time. The best combination of high thermal stability and high POH% (99.5%) occurred for encapsulated lipase produced with 24 h gelation time. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The conditions for maximization of the enzymatic activity of lipase entrapped in sol-gel matrix were determined for different vegetable oils using an experimental design. The effects of pH, temperature, and biocatalyst loading on lipase activity were verified using a central composite experimental design leading to a set of 13 assays and the surface response analysis. For canola oil and entrapped lipase, statistical analyses showed significant effects for pH and temperature and also the interactions between pH and temperature and temperature and biocatalyst loading. For the olive oil and entrapped lipase, it was verified that the pH was the only variable statistically significant. This study demonstrated that response surface analysis is a methodology appropriate for the maximization of the percentage of hydrolysis, as a function of pH, temperature, and lipase loading.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neodymium doped and undoped aluminum oxide samples were obtained using two different techniques: Pechini and sol-gel. Fine grained powders were produced using both procedures, which were analyzed using Scanning Electron Microscopy (SEM) and Thermo-Stimulated Luminescence (TSL). Results showed that neodymium ions incorporation is responsible for the creation of two new TSL peaks (125 and 265 degrees C) and, also, for the enhancement of the intrinsic TSL peak at 190 degrees C. An explanation was proposed for these observations. SEM gave the dimensions of the clusters produced by each method, showing that those obtained by Pechini are smaller than the ones produced by sol-gel; it can also explain the higher emission supplied by the first one. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thermoluminescence (TL) and Optically Stimulated Luminescence (OSL) properties of KAlSi(3)O(8):Mn glasses obtained through the sol gel technique were investigated. Samples were obtained with five different molar concentrations of 0.25, 0.5, 1, 2 and 5 mol% of manganese. Transmission Electronic Microscopy (TEM) indicated the occurrence of nanoparticles composed by glass matrix elements with Mn. Best results for TL response were obtained with 0.5 mol% Mn doped sample, which exhibits a TL peak at 180 degrees C. The TL spectrum of this sample presents a broad emission band from 450 to 700 nm with a peak at 575 nm approximately. The emission band fits very well with the characteristic lines of the Mn(2+) emission features. According to this fact, the band at 410 nm can be ascribed to (6)A(1)(S) -> (4)A(1)(G), (4)E(G) transition, while the 545 nm band can be attributed to the superposition of the transitions (6)A(1)(S) -> (4)T(2)(G) and (6)A(1)(S) -> (4)T(1)(G). The dependence of the TL response with the energy of X-rays (27-41 keV) showed a small decrease of the TL intensity in the high energy region. Excitation with blue LEDs showed OSL in the UV region with a fast decay component. (C) 2011 Elsevier Ltd. All rights reserved.