999 resultados para Soil Physics
Resumo:
The removal of chemicals in solution, by overland flow from agricultural land has the potential to be a significant source of chemical loss from zero-till and surface mulched farming systems. The objective of this study was to determine the magnitude of solute loss by surface runoff from agricultural systems. Previous experiments have enhanced the understanding of the exchange process, but the initial soil conditions together with the tracer application method in these experiments have meant that in some cases the results have limited applicability to field situations. In this study, two different sets of experiments were carried out to determine the magnitude of solute loss by surface runoff. These experiments entailed the surface application of bromide to (1) field scale plots 18 m long by 2 m wide and (2) repacked soil cores 236 mm in diameter; followed by the application of simulated rainfall in both cases. The most substantial finding of the field experiments was that the quantities of solute in surface runoff varied greatly with soil type and structure (0.07-14.9% of the applied bromide). Also, on some soils, large quantities of tracer were measured in the surface runoff even after several hours of infiltration. The experiments on soil cores showed that soil structure plays an important role in the quantity of chemical that may be transported in the surface runoff. These field results showed that, in certain systems, solute movement by overland flow is an important transport mechanism, which should be considered when budgeting for chemical loss. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
Soil structure is generally defined as the arrangement, orientation, and organization of the primary particles of sand, silt, and clay into compound aggregates, which exhibit properties that are unequal to the properties of a mass of nonaggregated material with a similar texture.6 Therefore the nature of soil structure is that it conveys specific properties to the soil and any alteration, i.e., breakdown or structural development, to the soil structural units will affect the physical properties of the soil. The aggregation and organization of the soil particles tend to form a hierarchical order4, 5 where the lower orders tend to have higher densities and greater internal strength than the higher orders. A schematic diagram of the hierarchical nature of soil structural elements in a clay soil is given in Fig. 1.4 Clay particles tend to form domains (packets of parallel clay sheets, generally consisting of 5-7 sheets), in turn several domains form clusters, followed by several orders of clusters, micro- and macroaggregates. The hierarchical nature implies that the destruction of a lower order will result in the destruction of all higher hierarchical orders. An example is the dispersion of sodic clay domains which results in the destruction of all higher orders, resulting in a dense soil with low hydraulic conductivity. Hence the clay domains are the fundamental building blocks of the soil and its integrity may determine the soil's physical properties and behavior.
Resumo:
Agriculture in limited resource areas is characterized by small farms which an generally too small to adequately support the needs of an average farm family. The farming operation can be described as a low input cropping system with the main energy source being manual labor, draught animals and in some areas hand tractors. These farming systems are the most important contributor to the national economy of many developing countries. The role of tillage is similar in dryland agricultural systems in both the high input (HICS) and low input cropping systems (LICS), however, wet cultivation or puddling is unique to lowland rice-based systems in low input cropping systems. Evidence suggest that tillage may result in marginal increases in crop yield in the short term, however, in the longer term it may be neutral or give rise to yield decreases associated with soil structural degradation. On marginal soils, tillage may be required to prepare suitable seedbeds or to release adequate Nitrogen through mineralization, but in the longer term, however, tillage reduces soil organic matter content, increases soil erodibility and the emission of greenhouse gases. Tillage in low input cropping systems involves a very large proportion of the population and any changes: in current practices such as increased mechanization will have a large social impact such as increased unemployment and increasing feminization of poverty, as mechanization may actually reduce jobs for women. Rapid mechanization is likely to result in failures, but slower change, accompanied by measures to provide alternative rural employment, might be beneficial. Agriculture in limited resource areas must produce the food and fiber needs of their community, and its future depends on the development of sustainable tillage/cropping systems that are suitable for the soil and climatic conditions. These should be based on sound biophysical principles and meet the needs of and he acceptable to the farming communities. Some of the principle requirements for a sustainable system includes the maintenance of soil health, an increase in the rain water use efficiency of the system, increased use of fertilizer and the prevention of erosion. The maintenance of crop residues on the surface is paramount for meeting these requirements, and the competing use of crop residues must be met from other sources. These requirements can be met within a zonal tillage system combined with suitable agroforestry, which will reduce the need for crop residues. It is, however, essential that farmers participate in the development of any new technologies to ensure adoption of the new system. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
The effects of various fallow management systems and cropping intensities on water infiltration were measured on an Alfisol at Ibadan in southwestern Nigeria. The objective was to determine the influence of the land use systems (a combination of crop-fallow sequences and intercropping types) on soil hydraulic properties obtained by disc permeameter and double-ring infiltration measurements. The experiment was established in 1989 as a split-plot design with four replications. The main plots were natural fallow, planted Pueraria phaseoloides and planted Leucaena leucocephala. The subplots were 1 year of maize/cassava intercrop followed by 3-year fallow (25% cropping intensity), or 2-year fallow (33% cropping intensity), or 1-year fallow (50% cropping intensity), or no fallow period (100% cropping intensity). Water infiltration rates and sorptivities were measured under saturated and unsaturated flow. Irrespective of land use, infiltration rates at the soil surface (121-324 cm h(-1)) were greater than those measured at 30 cm depth (55-144 cm h(-1)). This indicated that fewer large pores were present below 30 cm depth compared with 0-30 cm, depth. Despite some temporal variation, sorptivities with the highest mean value of 93.5 cm h(-1/2) increased as the cropping intensity decreased, suggesting a more continuous macropore system under less intensive land use systems. This was most likely due to continuous biopores created by perennial vegetation under long fallow systems. Intercropped maize and cassava yields also increased as cropping intensity decreased. The weak relationship between crop yields and hydraulic conductivity/infiltration rates suggests that the rates were not limiting.
Resumo:
Fractal mathematics has been used to characterize water and solute transport in porous media and also to characterize and simulate porous media properties. The objective of this study was to evaluate the correlation between the soil infiltration parameters sorptivity (S) and time exponent (n) and the parameters dimension (D) and the Hurst exponent (H). For this purpose, ten horizontal columns with pure (either clay or loam) and heterogeneous porous media (clay and loam distributed in layers in the column) were simulated following the distribution of a deterministic Cantor Bar with fractal dimension H" 0.63. Horizontal water infiltration experiments were then simulated using Hydrus 2D software. The sorptivity (S) and time exponent (n) parameters of the Philip equation were estimated for each simulation, using the nonlinear regression procedure of the statistical software package SAS®. Sorptivity increased in the columns with the loam content, which was attributed to the relation of S with the capillary radius. The time exponent estimated by nonlinear regression was found to be less than the traditional value of 0.5. The fractal dimension estimated from the Hurst exponent was 17.5 % lower than the fractal dimension of the Cantor Bar used to generate the columns.
Resumo:
An accurate estimation of hydraulic fluxes in the vadose zone is essential for the prediction of water, nutrient and contaminant transport in natural systems. The objective of this study was to simulate the effect of variation of boundary conditions on the estimation of hydraulic properties (i.e. water content, effective unsaturated hydraulic conductivity and hydraulic flux) in a one-dimensional unsaturated flow model domain. Unsaturated one-dimensional vertical water flow was simulated in a pure phase clay loam profile and in clay loam interlayered with silt loam distributed according to the third iteration of the Cantor Bar fractal object Simulations were performed using the numerical model Hydrus 1D. The upper and lower pressure heads were varied around average values of -55 cm for the near-saturation range. This resulted in combinations for the upper and lower constant head boundary conditions, respectively, of -50 and -60 cm, -40 and -70 cm, -30 and -80 cm, -20 and -90 cm, and -10 and -100 cm. For the drier range the average head between the upper and lower boundary conditions was set to -550 cm, resulting in the combinations -500 and -600 cm, -400 and -700 cm, -300 and -800 cm, -200 and -900 cm, and -100 and -1,000 cm, for upper and lower boundary conditions, respectively. There was an increase in water contents, fluxes and hydraulic conductivities with the increase in head difference between boundary conditions. Variation in boundary conditions in the pure phase and interlayered one-dimensional profiles caused significant deviations in fluxes, water contents and hydraulic conductivities compared to the simplest case (a head difference between the upper and lower constant head boundaries of 10 cm in the wetter range and 100 cm in the drier range).
Resumo:
Leptosols and Regosols are soils with a series of restrictions for use, mainly related to the effective depth, which have been poorly studied in Brazil. These soils, when derived from sedimentary rocks should be treated with particular care to avoid environmental damage such as aquifer contamination. The purpose of this study was to verify the behavior of hydraulic conductivity and water retention capacity in profiles of Leptosols and Regosols derived from sandstone of the Caturrita formation in Rio Grande do Sul state. The morphology, particle size distribution, porosity, soil density (Ds), saturated hydraulic conductivity (Ks), basic water infiltration in the field (BI) and water retention were determined in soil and saprolite samples of six soil profiles. High Ds, low macroporosity and high microporosity were observed in the profiles, resulting in a low Ks and BI, even under conditions of sandy texture and a highly fractured saprolite layer. The variation coefficients of data of Ks and BI were high among the studied profiles and between replications of a same profile. Water retention of the studied soils was higher in Cr layers than in the A horizons and the volume of plant-available water greater and variable among A horizons and Cr layers.
Resumo:
Gypsum application may enhance the soil quality for plants in terms of soil chemical and physical properties. The objective of this study was to evaluate the effects of gypsum application on the structural quality of a no-tillage Red Latosol. The experiment was initiated in September 2005 in Guarapuava-PR, with gypsum applications of 0; 4; 8; and 12 Mg ha-1 on the soil surface. In November 2009, two soil blocks were sampled from the 0-0.3 m layer for visual evaluation of the soil structure quality (Sq) and to determine the aggregate-tensile strength (ATS). Soil penetration resistance (PR) and gravimetric moisture (H%) of the 0-0.300 m layer were evaluated, and soil cores were collected (layers 0.000-0.075 and 0.075-0.150 m), to determine soil bulk density (BD), total soil porosity (TP), microporosity (Mi), and macroporosity (Ma). Data were subjected to analysis of regression at 5 %. No significant effects of gypsum application on ATS and H % of aggregates were observed, but for Sq, a quadratic effect (0.000-0.075 m) and linear increase (0.075-0.150 and 0.150-0.300 m) were stated, indicating soil quality decrease, although Sq remained mostly below 3.0, with good to intermediate soil quality. Soil PR increased with gypsum, but also remained below critical levels. No effect was observed for soil H % at the moment of PR determination on the field. The gypsum applications decreased BD in the 0.075-0.150 m layer, and increased PT and Ma, while in 0.000-0.075 m some Ma was converted to Mi, without affecting PT and BD. These last results indicate a gain in soil structural quality by gypsum applications, but the higher scores of soil structure and values of soil penetration resistance, though still below thresholds, should be monitored to prevent limitations to soil use in the future.
Resumo:
Soil management practices which increase the root depth penetration of citrus are important to the longevity and yield maintenance of this plant, especially in regions where long periods of drought are common, even in soil conventionally subsoiled to a depth of 30-40 cm, when the orchard was first established. The objective of this study was to evaluate the efficiency of subsoiling on the physical and hydric properties of a Typical Hapludult and fruit yield in a 14-year-old citrus orchard located in Piracicaba, SP. The treatments consisted of: no-subsoiling (with no tilling of the soil after the orchard was planted); subsoiling on one side of the plant lines (SUB. 1); and subsoiling on both sides of the plant lines (SUB. 2). The subsoiling treatments were carried out 1.5 m from the plant lines and to a depth of 0.8 m. Soil samples were taken 120 days after this operation, at four depths, in order to determine physical and hydric properties. Fruit yield was evaluated 150 days after subsoiling. Subsoiling between the plant lines of an old established citrus orchard alters the physical and hydric properties of the soil, which is reflected in increased soil macroporosity and unsaturated hydraulic conductivity, and reduced soil bulk density, critical degree-of-compactness and penetration resistance. The improvements in the physical and hydric properties of the soil were related to an increase in fruit number and orchard yield.
Resumo:
Tillage systems are a key element of the technology of crop production, both with a view to crop yield and from the perspective of soil conservation and sustainability of the production system. The aim of this paper was to evaluate the effects of five tillage systems on the physical properties of a cohesive Yellow Argisol. The experiment was installed in the field on January 21, 2011 and lasted 260 days, in an area previously used as pasture with Brachiaria grass without liming or fertilization, but irrigated by a low pressure spray system. The treatments, in five replications and in a randomized block design, consisted of: 1) disk plow (twice) + disk harrow + ridge-furrow tillage (raising a ridge along the planting row), 135 days after transplanting (DP + RID); 2) disk plow (twice) + disk harrow (DP no RID); 3) subsoiler (SB); 4) disk plow (twice) + disk harrow + scarification with three shanks along the plant row (DP + SPR); and 5) disk plow (twice) + disk harrow + scarification with three shanks in the total area (DP + STA). In all tillage systems, furrows were mechanically opened for the papaya plants. After the treatments, the mechanical resistance to penetration was determined, followed by soil moisture, mean weight diameter (MWD), geometric mean diameter (GMD), bulk density (BD), macroporosity (Ma), microporosity (Mi), and number of fruits per plant. There were differences in penetration resistance (PR) between treatments. The subsoiler was more effective to decrease RP to a distance of 0.35 m from the plants, perpendicular to the plant row. The scarifier resulted in a lower PR than DP or SB, even at the depth of 0.40 m, and it was more effective at greater distances perpendicular to the plant. All tillage systems induced a PR between 2.0 and 3.0 MPa at the depth with the highest concentration of papaya tree roots (0-0.25 m), improving the physical conditions to this depth. There was no statistical difference among the treatments for BD, Ma, Mi, MWD, and GMD at a depth of 0.20 m. The disk plow changed the physical properties of the soil most intensely to a depth of 0.20 m. The use of scarification, reduced tillage with a forest subsoiler, or ridge-furrow tillage did not improve the physical properties in the rhizosphere. Reduced tillage with a forest subsoiler resulted in a lower number of fruits per plant than all other treatments, which did not differ from each other.
Resumo:
Soil physical quality can be easily and quickly evaluated by using simple equipment to identify levels of soil compaction. Hence, it is necessary to know the variables responsible for changes in the soil penetration resistance (SPR). The aim of this review is to identify the main factors related to the various equipment used for assessing SPR as a soil physical quality indicator in agriculture. This literature review describes the different types of equipment used and its relationship with SPR. A wide range of procedures, devices, and equipments are available. Much of variability in SPR results is related to the equipment model, cone angle and diameter, and penetration rate. Usually, restrictions to root growth are correlated with SPR values above 2-3 MPa. However, comparisons of SPR values obtained under different soil moisture regimes in the same soil type have provided conflicting results of difficult interpretation. In order to minimize these problems, there is a need for standardization of measurement procedures and interpretation, and/or correction of SPR values according to a soil water content of reference.
Resumo:
The evaluation of technologies employed at the agricultural production system such as crop rotation and soil preparation, both associated with crop-livestock integration, is crucial. Therefore, the aim of the present study was to evaluate the incorporation of lime for three no-tillage systems and cultural managements in system of crop-livestock integration, with emphasis on corn grain yield. The experiment was conducted from January 2003 to April 2005 at Selvíria city, MS, in Dystroferric Red Latosol, clay texture. The experimental design was randomized blocks with split plots consisted of three main treatments, aimed the soil physics conditioning and the incorporation of lime: PD - No-no-tillage; CM - minimum no-tillage, and PC - conventional no-tillage; and of two secondary treatments related to the management: rotation and crop succession, with four replications. Data on agronomic traits of maize were analyzed: plant height, stem diameter, height of the first spike insertion, 100 grains weight and grain yield. The results showed that the maize produced under the system of crop-livestock integration is quite feasible, showing that grain yields are comparable to averages in the region and the different soil physical conditioning and incorporation of lime did not influence the corn yield as well as the cultural managements, rotation and succession, did not affect the maize crop behavior after two years of cultivation.
Resumo:
Para o conhecimento do comportamento físico-hídrico do solo, é fundamental a determinação da curva de retenção de água (CRA). A aquisição de dados para obtenção da CRA envolve processos demorados e custos elevados. A hipótese deste estudo foi a de que é possível determinar a CRA com menor número de tensões, reduzindo seu tempo de obtenção, sem, contudo, comprometer a acurácia dos resultados. Assim, o objetivo deste trabalho foi determinar quais tensões podem ser utilizadas para determinação da CRA de Latossolo Vermelho eutrófico de maneira acurada e em menor tempo. Foram determinados os conteúdos de água retidos em amostras de um Latossolo Vermelho eutrófico sob sistema de semeadura direta (SSD). As tensões utilizadas na determinação dos conteúdos de água foram: 0, 10, 20, 40, 60, 80, 100, 200, 300, 500, 700, 1.000, 3.000, 5.000 e 15.000 hPa. Os dados foram combinados e determinaram-se 450 CRAs ajustadas pelo modelo de van Genuchten. Os parâmetros α, m, n e Ug res, gerados pelo modelo, foram submetidos à análise de variância (teste F) e as médias comparadas pelo teste de Scott-Knott (p = 0,05). A hipótese deste estudo foi confirmada, ou seja, é possível determinar a CRA com menor número de tensões, reduzindo seu tempo de obtenção em até cinco vezes, sem, contudo, comprometer a acurácia dos resultados. A tensão de 15.000 hPa deve estar contida na combinação de tensões a serem utilizadas para determinação da curva característica de retenção de água, quando se emprega o modelo matemático de van Genuchten para ajuste dos dados. As curvas características de retenção de água do solo, definidas com as combinações de tensões (0, 60, 700 e 15.000 hPa), (0, 80, 700 e 15.000 hPa), (0, 100, 1.000 e 15.000 hPa), (0, 20, 60, 100, 700 e 15.000 hPa), (0, 80, 300, 700 e 15.000 hPa) e (0, 100, 300, 1.000 e 15.000 hPa), sendo os dados ajustados ao modelo de van Genuchten, proporcionaram estimativas dos conteúdos de água, retidos no Latossolo Vermelho eutrófico sob sistema de semeadura direta, com a mesma acurácia, quando comparada à curva de referência partindo-se de um conjunto de 15 valores de tensões.
Resumo:
The objective of this work was to evaluate the soil physics and chemical attributes of Rhodic Ferralsol, in sugarcane systems harvest compared with soil forest. The treatments were consisted by native forest, manual and mechanized sugarcane harvesting. The soil was sampled at 0-0.10; 0.10-0.20 and 0.20-0.30 m soil depths. The soil organic matter, pH and PCZ values, flocculation degree and soil aggregation were evaluated in each soil sample. The statistics analysis was carried in a split-plot completely randomized design with five replications, exception for the soil aggregation,, with six replications The soil under MN, the soil organic matter and aggregates percentage (7.93 mm class) were higher. The higher mean weigh diameter aggregates was observed at 0-0.20 soil depth, in MN.
Resumo:
Forage sorghum can be grown in areas presenting dry and hot environmental situations where the yield of other grasses can often be uneconomical. The objective of this study was to analyze the operating performance of agricultural machines in the deployment of sorghum forage in four tillage systems, as follows: no-tillage system, disk harrow + seeding, disk harrow + two light disking + seeding, minimum tillage + seeding and four seeding different speeds, as follows: 3, 5, 6 and 9 km h(-1). The study was performed under field conditions in FCA/UNESP, Botucatu County, SP, Brazil. The data were subjected to variance analysis in a simple factorial 4 x 4, and a random block design with split plots. Operational performance of the agricultural machinery, physical characteristics the soil, its water content and the yield of dry matter and green sorghum were determined. The operational performance of agricultural machines in the deployment of sorghum forage is influenced by the sowing speed and the soil tillage system used. Chisel plow was the equipment that required the highest mean traction force, mean traction and slip, as well as the lowest mean speed for the studied tillage system. Forage sorghum showed higher yields in no-tillage systems at a seeding speed of 5 km h(-1).