987 resultados para Soil - Phosphorus asorption


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Few studies have directly related turfgrass growth and quality responses to extractable soil P concentrations in sand greens. A 3-yr field experiment was conducted on a sand-based putting green to determine creeping bentgrass (Agrostis stolonifera L.) growth and quality responses to extractable soil P. Extractable soil P concentrations were obtained by using the modified-Morgan, Mehlich-1, and Bray-1 extractants. Critical extractable P concentrations (above which there is a low probability of response to increasing soil P concentrations) for shoot counts, thatch thickness, relative clipping yields, quality ratings, P deficiency ratings, tissue P concentrations, and root weights were determined using Cate-Nelson (CN) and quadratic response and plateau (QRP) models. Both models fit the data relatively well in most cases (R2 values from 0.12 to 0.89), and critical concentrations for the QRP models were always greater than the CN models. Critical extractable P concentrations were lowest for the modified-Morgan extractant (1.4 to 12.0 mg kg(-1)) and greatest for the Mehlich-1 extractant (14.1 to 63.6 mg kg(-1)). Application of estimated critical extractable P concentrations in this study could be used to substantiate observed responses or explain lack of responses in other previously reported creeping bentgrass P studies. We found better model fits with modified-Morgan extractable P for bentgrass quality ratings, deficiency ratings, and tissue P concentrations than with P extracted by the Mehlich or Bray methods. This suggests that the modified-Morgan extractant may have advantages over stronger-acid extractants when used on sand-based media. The results can be used to revise or update existing P fertilization recommendations for bent-grass grown on sand-based media.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This data set contains two time series of measurements of dissolved phosphorus (organic, inorganic and total with a biweekly resolution) and dissolved inorganic phosphorus with a seasonal resolution. In addition, data on phosphorus from soil samples measured in 2007 and fractionated by different acid-extrations (Hedley fractions) are provided. All data measured at the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. 1. Dissolved phosphorus in soil solution: Suction plates installed on the field site in 10, 20, 30 and 60 cm depth were used to sample soil pore water. Cumulatively extracted soil solution was collected every two weeks from October 2002 to May 2006. The biweekly samples from 2002, 2003 and 2004 were analyzed for dissolved organic phosphorus (DOP), dissolved inorganic phosphorus (PO4P) and dissolved total phosphorus (TDP) by Continuous Flow Analyzer (CFA SAN ++, SKALAR [Breda, The Netherlands]). 2. Seasonal values of dissolved inorganic phosphorus in soil solution were calculated as volume-weighted mean values of the biweekly measurements (spring = March to May, summer = June to August, fall = September to November, winter = December to February). 3. Phosphorus fractions in soil: Five independent soil samples per plot were taken in a depth of 0-15 cm using a soil corer with an inner diameter of 1 cm. The five samples per plot were combined to one composite sample per plot. A four-step sequential P fractionation (Hedley fractions) was applied and concentrations of P fractions in soil were measured photometrically (molybdenum blue-reactive P) with a Continuous Flow Analyzer (Bran&Luebbe, Germany).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Limited availability of P in soils to crops may be due to deficiency and/or severe P retention. Earlier studies that drew on large soil profile databases have indicated that it is not (yet) feasible to present meaningful values for "plant-available" soil P, obtained according to comparable analytical methods, that may be linked to soil geographical databases derived from 1:5 million scale FAO Digital Soil Map of the World, such as the 5 x 5 arc-minute version of the ISRIC-WISE database. Therefore, an alternative solution for studying possible crop responses to fertilizer-P applied to soils, at a broad scale, was sought. The approach described in this report considers the inherent capacity of soils to retain phosphorus (P retention), in various forms. Main controlling factors of P retention processes, at the broad scale under consideration, are considered to be pH, soil mineralogy, and clay content. First, derived values for these properties were used to rate the inferred capacity for P retention of the component soil units of each map unit (or grid cell) using four classes (i.e., Low, Moderate, High, and Very High). Subsequently, the overall soil phosphorus retention potential was assessed for each mapping unit, taking into account the P-ratings and relative proportion of each component soil unit. Each P retention class has been assigned to a likely fertilizer P recovery fraction, derived from the literature, thereby permitting spatially more detailed, integrated model-based studies of environmental sustainability and agricultural production at the global and continental level (< 1:5 million). Nonetheless, uncertainties remain high; the present analysis provides an approximation of world soil phosphorus retention potential.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wetlands respond to nutrient enrichment with characteristic increases in soil nutrients and shifts in plant community composition. These responses to eutrophication tend to be more rapid and longer lasting in oligotrophic systems. In this study, we documented changes associated with water quality from 1989 to 1999 in oligotrophic Everglades wetlands. We accomplished this by resampling soils and macrophytes along four transects in 1999 that were originally sampled in 1989. In addition to documenting soil phosphorus (P) levels and decadal changes in plant species composition at the same sites, we report macrophyte tissue nutrient and biomass data from 1999 for future temporal comparisons. Water quality improved throughout much of the Everglades in the 1990s. In spite of this improvement, though, we found that water quality impacts worsened during this time in areas of the northern Everglades (western Loxahatchee National Wildlife Refuge [NWR] and Water Conservation Area [WCA] 2A). Zones of high soil P (exceeding 700 mg P kg−1 dry wt. soil) increased to more than 1 km from the western margin canal into the Loxahatchee NWR and more than 4 km from northern boundary canal into WCA-2A. This doubling of the high soil P zones since 1989 was paralleled with an expansion of cattail (Typha spp.)-dominated marsh in both regions. Macrophyte species richness declined in both areas from 1989 to 1999 (27% in the Loxahatchee NWR and 33% in WCA-2A). In contrast, areas well south of the Everglades Agricultural Area, including WCA-3A and Everglades National Park (ENP), did not decline during this time. We found no significant decadal change in plant community patterns from 1989 and 1999 along transects in southern WCA-3A or Shark River Slough (ENP). Our 1999 sampling also included a new transect in Taylor Slough (ENP), which will allow change analysis here in the future. Regular sampling of these transects, to verify decadal-scale environmental impacts or improvements, will continue to be an important tool for long-term management and restoration of the Everglades.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An overwhelming majority of all the research on soil phosphorus (P) has been carried out with soil samples taken from the surface soils only, and our understanding of the forms and the reactions of P at a soil profile scale is based on few observations. In Finland, the interest in studying the P in complete soil profiles has been particularly small because of the lack of tradition in studying soil genesis, morphology, or classification. In this thesis, the P reserves and the retention of orthophosphate phosphorus (PO4-P) were examined in four cultivated mineral soil profiles in Finland (three Inceptisols and one Spodosol). The soils were classified according to the U.S. Soil Taxonomy and soil samples were taken from the genetic horizons in the profiles. The samples were analyzed for total P concentration, Chang and Jackson P fractions, P sorption properties, concentrations of water-extractable P, and for concentrations of oxalate-extractable Al and Fe. Theoretical P sorption capacities and degrees of P saturation were calculated with the data from the oxalate-extractions and the P fractionations. The studied profiles can be divided into sections with clearly differing P characteristics by their master horizons Ap, B and C. The C (or transitional BC) horizons below an approximate depth of 70 cm were dominated by, assumingly apatitic, H2SO4-soluble P. The concentration of total P in the C horizons ranged from 729 to 810 mg kg-1. In the B horizons between the depths of 30 and 70 cm, a significant part of the primary acid-soluble P has been weathered and transformed to secondary P forms. A mean weathering rate of the primary P in the soils was estimated to vary between 230 and 290 g ha-1 year-1. The degrees of P saturation in the B and C horizons were smaller than 7%, and the solubility of PO4-P was negligible. The P conditions in the Ap horizons differed drastically from those in the subsurface horizons. The high concentrations of total P (689-1870 mg kg-1) in the Ap horizons are most likely attributable to long-term cultivation with positive P balances. A significant proportion of the P in the Ap horizons occurred in the NH4F- and NaOH-extractable forms and as organic P. These three P pools, together with the concentrations of oxalate-extractable Al and Fe, seem to control the dynamics of PO4-P in the soils. The degrees of P saturation in the Ap horizons were greater (8-36%) than in the subsurface horizons. This was also reflected in the sorption experiments: Only the Ap horizons were able to maintain elevated PO4-P concentrations in the solution phase − all the subsoil horizons acted as sinks for PO4-P. Most of the available sorption capacity in the soils is located in the B horizons. The results suggest that this capacity could be utilized in reducing the losses of soluble P from excessively fertilized soils by mixing highly sorptive material from the B horizons with the P-enriched surface soil. The drastic differences in the P characteristics observed between adjoining horizons have to be taken into consideration when conducting soil sampling. Sampling of subsoils has to be made according to the genetic horizons or at small depth increments. Otherwise, contrasting materials are likely to be mixed in the same sample; and the results of such samples are not representative of any material present in the studied profile. Air-drying of soil samples was found to alter the results of the sorption experiments and the water extractions. This indicates that the studies on the most labile P forms in soil should be carried out with moist samples.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The low availability of zinc (Zn) in soils and crops affects dietary Zn intake worldwide. This study sought to determine if the natural genetic variation in shoot Zn concentrations (Zn(shoot)) is sufficient to pursue a crop improvement breeding strategy in a leafy vegetable crop. The gene-pool of Brassica oleracea L. was sampled using a large (n = 376) diversity foundation set (DFS), representing almost all species-wide common allelic variation, and 74 commercial varieties (mostly F(1)). The DFS genotypes were grown at low and high soil phosphorus (P) levels under glasshouse and field conditions, and also in a Zn-deficient soil, with or without Zn-fertilisation, in a glasshouse. Despite the large variation in Zn(shoot) among genotypes, environment had a profound effect on Zn(shoot) The heritability of Zn(shoot) was significant, but relatively low, among 90 doubled-haploid (DH) lines from a mapping population. While several quantitative trait loci (QTL) associated with Zn(shoot) occurred on chromosomes C2, C3, C5, C7, and C9, these were generally weak and conditional upon growth conditions. Breeding for Zn(shoot) in B. oleracea is therefore likely to be challenging. Shoot P concentrations increased substantially in all genotypes under low soil Zn conditions. Conversely, only some genotypes had increased Zn(shoot) at low soil P levels. Sufficient natural genetic variation may therefore exist to study some of the interactions between Zn and P nutrition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of crop rotation and manure application can provide sustainability for an agricultural production system by improving soil quality and increasing nutrient use efficiency. This study aimed to evaluate the effect of mineral, organic and mineral+organic fertilization on grain yield and on soil phosphorus and potassium balance, in two crop systems under no-till, with and without rotation of cover crops. The experiment was carried out from 2006 to 2008 on a clayey Rhodic Hapludox in Marechal Candido Rondon, Parana State, Brazil. The cropping sequence in the rotation system involving cover crops was black oat + hairy vetch + forage turnip/corn/pigeon pea/wheat/mucuna + brachiaria + sunn hemp, and in the succession system was wheat/corn/wheat/soybean. Organic and mineral+organic fertilizations consisted of the application of solely manure and manure combined with mineral fertilizer, respectively. Soil P and K balances were calculated after the second year of the experiment, up to a depth of 0.40 m. First year corn yields were higher in the crop succession system accompanied by mineral fertilization. In the second year, wheat and soybean yield did not vary between crop systems and nutrient sources, demonstrating the residual effect of crop rotation and manure use. Crop rotation with cover crops resulted in an increase in soil K levels by promoting the recycling of this nutrient in the soil. In both crop systems, the application of mineral and organic fertilizers - either in isolation or in combination - resulted in a negative soil P and K balance in the short term. This represents a threat to the sustainability of the agricultural production system in the long term, due to the depletion of soil nutrient reserves.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Water reuse through greywater irrigation has been adopted worldwide and has been proposed as a potential sustainable solution to increased water demands. Despite widespread adoption there is limited domestic knowledge of greywater reuse, there is no pressure to produce lowlevel phosphorus products and current guidelines and legislation, such as those in Australia, may be inadequate due to the lack of long-term data to provide a sound scientific basis. Research has clearly identified phosphorus as a potential environmental risk to waterways from many forms of irrigation. To assess the sustainability of greywater irrigation, this study compared four residential lots that had been irrigated with greywater for four years and adjacent non-irrigated lots that acted as controls. Each lot was monitored for the volume of greywater applied and selected physic-chemical water quality parameters and soil chemistry profiles were analysed. The non-irrigated soil profiles showed low levels of phosphorus and were used as controls. The Mechlich3 Phosphorus ratio (M3PSR) and Phosphate Environmental Risk Index (PERI) were used to determine the environmental risk of phosphorus leaching from the irrigated soils. Soil phosphorus concentrations were compared to theoretical greywater irrigation loadings. The measured phosphorus soil concentrations and the estimated greywater loadings were of similar magnitude. Sustainable greywater reuse is possible; however incorrect use and/or a lack of understanding of how household products affect greywater can result in phosphorus posing a significant risk to the environment.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Phosphorus is a nutrient needed in crop production. While boosting crop yields it may also accelerate eutrophication in the surface waters receiving the phosphorus runoff. The privately optimal level of phosphorus use is determined by the input and output prices, and the crop response to phosphorus. Socially optimal use also takes into account the impact of phosphorus runoff on water quality. Increased eutrophication decreases the economic value of surface waters by Deteriorating fish stocks, curtailing the potential for recreational activities and by increasing the probabilities of mass algae blooms. In this dissertation, the optimal use of phosphorus is modelled as a dynamic optimization problem. The potentially plant available phosphorus accumulated in soil is treated as a dynamic state variable, the control variable being the annual phosphorus fertilization. For crop response to phosphorus, the state variable is more important than the annual fertilization. The level of this state variable is also a key determinant of the runoff of dissolved, reactive phosphorus. Also the loss of particulate phosphorus due to erosion is considered in the thesis, as well as its mitigation by constructing vegetative buffers. The dynamic model is applied for crop production on clay soils. At the steady state, the analysis focuses on the effects of prices, damage parameterization, discount rate and soil phosphorus carryover capacity on optimal steady state phosphorus use. The economic instruments needed to sustain the social optimum are also analyzed. According to the results the economic incentives should be conditioned on soil phosphorus values directly, rather than on annual phosphorus applications. The results also emphasize the substantial effects the differences in varying discount rates of the farmer and the social planner have on optimal instruments. The thesis analyzes the optimal soil phosphorus paths from its alternative initial levels. It also examines how erosion susceptibility of a parcel affects these optimal paths. The results underline the significance of the prevailing soil phosphorus status on optimal fertilization levels. With very high initial soil phosphorus levels, both the privately and socially optimal phosphorus application levels are close to zero as the state variable is driven towards its steady state. The soil phosphorus processes are slow. Therefore, depleting high phosphorus soils may take decades. The thesis also presents a methodologically interesting phenomenon in problems of maximizing the flow of discounted payoffs. When both the benefits and damages are related to the same state variable, the steady state solution may have an interesting property, under very general conditions: The tail of the payoffs of the privately optimal path as well as the steady state may provide a higher social welfare than the respective tail of the socially optimal path. The result is formalized and an applied to the created framework of optimal phosphorus use.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The large range of body-mass values of soil organisms provides a tool to assess the ecological organization of soil communities. The goal of this paper is to identify graphical and quantitative indicators of soil community composition and ecosystem functioning, and to illustrate their application to real soil food webs. The relationships between log-transformed mass and abundance of soil organisms in 20 Dutch meadows and heathlands were investigated. Using principles of allometry, maximal use can be made of ecological theory to build and explain food webs. The aggregate contribution of small invertebrates such as nematodes to the entire community is high under low soil phosphorus content and causes shifts in the mass-abundance relationships and in the trophic structures. We show for the first time that the average of the trophic link lengths is a reliable predictor for assessing soil fertility responses. Ordered trophic link pairs suggest a self-organizing structure of food webs according to resource availability and can predict environmental shifts in ecologically meaningful ways.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This research work aimed at investigating the physiological mechanisms of tolerance of pearl millet to low soil Phosphorus availability and drought under the Sahelian conditions.