998 resultados para Soft X-ray


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Saturable absorption is a phenomenon readily seen in the optical and infrared wavelengths. It has never been observed in core-electron transitions owing to the short lifetime of the excited states involved and the high intensities of the soft X-rays needed. We report saturable absorption of an L-shell transition in aluminium using record intensities over 10(16)W cm(-2) at a photon energy of 92 eV. From a consideration of the relevant timescales, we infer that immediately after the X-rays have passed, the sample is in an exotic state where all of the aluminium atoms have an L-shell hole, and the valence band has approximately a 9 eV temperature, whereas the atoms are still on their crystallographic positions. Subsequently, Auger decay heats the material to the warm dense matter regime, at around 25 eV temperatures. The method is an ideal candidate to study homogeneous warm dense matter, highly relevant to planetary science, astrophysics and inertial confinement fusion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the past few years, the development of light sources of the 4(th) generation, namely XUV/X-ray Free Electron Lasers provides to the scientific community outstanding tools to investigate matter under extreme conditions never obtained in laboratories so far. As theory is at its infancy, the analysis of matter via the self-emission of the target is of central importance. The characterization of such dense matter is possible if photons can escape the medium. As the absorption of K-shell X-ray transitions is minimal, it plays a key role in this study. We report here the first successful observation of K-shell emission of Nitrogen at 430 eV using an XUV-Free Electron Laser to irradiate solid Boron Nitride targets under exceptional conditions: photon energy of 92 eV, pulse duration of similar to 20 fs, micro focusing leading to intensities larger than 10(16) W/cm(2). Using a Bragg crystal of THM coupled to a CCD, we resolved K-shell line emission from different charge states. We demonstrate that the spectroscopic data allow characterization of electron heating processes when X-ray radiation is interacting with solid matter. As energy transport is non-trivial because the light source is monochromatic, these results have an important impact on the theory. (C) 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The collisionally excited transient inversion scheme is shown to produce exceptionally high gain coefficients and gain-length products. Data are presented for the Ne-Like titanium and germanium and Ni-like silver X-ray lasers (XRL's) pumped using a combination of nanosecond and picosecond duration laser pulses. This method leads to a dramatic reduction of the required pump energy and makes down-sizing of XRL's possible, an important prerequisite if they are to become commonly used tools in the Long-term.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Distributions of source intensity in two dimensions (designated the source model), averaged over a single laser pulse, based on experimental measurements of spatial coherence, are considered for radiation from the unresolved 23.2/23.6 nm spectral lines from the germanium collisional X-ray laser. The model derives from measurements of the visibility of Young slit interference fringes determined by a method based on the Wiener-Khinchin theorem. Output from amplifiers comprising three and four target elements have similar coherence properties in directions within the horizontal plane corresponding to strong plasma refraction effects and fitting the coherence data shows source dimensions (FWHM) are similar to 26 mu m (horizontal), significantly smaller than expected by direct imaging, and similar to 125 mu m (vertical: equivalent to the height of the driver excitation). (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The time dependence of the spatial coherence of the combined spectral lines at 23.2 and 23.6 nm from the Ge XXIII collisionally pumped soft-x-ray laser with a double-slab target is examined within a single nanosecond pulse by use of Young's interference fringes and a streak camera. High source intensity is linked with low spatial coherence and vice verse. Calculations of the source intensity, size, and position have also been made; these calculations refer to a single-slab source. Comparison between the observed and calculated intensities, and of the source sizes both calculated and derived from the Young's fringes by interpretation with a Gaussian model of source emission, show good agreement in general trends. (C) 1998 Optical Society of America [S0740-3224(98)01905-5].

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have tested soft X-ray lasing in neon-like germanium with cylindrical targets where wave guiding and plasma confinement may affect lasing. An intense soft X-ray laser beam of 0.05 MW peak power and a narrow beam divergence (8 mrad) was produced at 23.6 nm with a 4 cm long straight cylindrical target of 0.72 mm inner diameter. Bending the cylindrical target to form a toroidal shape increased the lasing intensity by a factor of 3 accompanied with reduction of the beam divergence from 8 to 6 mrad.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lasing properties of a collisional-excitation Ne-like Ge soft-x-ray laser have been studied with exploding-foil, single-slab, and double-slab targets under identical pumping conditions. Experimental results for the angular intensity distributions and the temporal variations of the lasing intensities are examined with a hydrodynamic code and ray-trace calculations. The observed angular distribution are well reproduced by these analyses, and it is found that the effective gain regions are located on the high-density side of the expected gain regions. It is shown that the observed lasing intensity of the J = 0 to J = 1 line is strongly correlated with the temporal change of the calculated electron temperature for both the slab and the exploding-foil targets.