872 resultados para Social Network Markets
Resumo:
We study a model where agents, located in a social network, decide whether to exert effort or not in experimenting with a new technology (or acquiring a new skill, innovating, etc.). We assume that agents have strong incentives to free ride on their neighbors' effort decisions. In the static version of the model efforts are chosen simultaneously. In equilibrium, agents exerting effort are never connected with each other and all other agents are connected with at least one agent exerting effort. We propose a mean-field dynamics in which agents choose in each period the best response to the last period's decisions of their neighbors. We characterize the equilibrium of such a dynamics and show how the pattern of free riders in the network depends on properties of the connectivity distribution.
Resumo:
Our purpose in this article is to define a network structure which is based on two egos instead of the egocentered (one ego) or the complete network (n egos). We describe the characteristics and properties for this kind of network which we call “nosduocentered network”, comparing it with complete and egocentered networks. The key point for this kind of network is that relations exist between the two main egos and all alters, but relations among others are not observed. After that, we use new social network measures adapted to the nosduocentered network, some of which are based on measures for complete networks such as degree, betweenness, closeness centrality or density, while some others are tailormade for nosduocentered networks. We specify three regression models to predict research performance of PhD students based on these social network measures for different networks such as advice, collaboration, emotional support and trust. Data used are from Slovenian PhD students and their s
Resumo:
HEMOLIA (a project under European community’s 7th framework programme) is a new generation Anti-Money Laundering (AML) intelligent multi-agent alert and investigation system which in addition to the traditional financial data makes extensive use of modern society’s huge telecom data source, thereby opening up a new dimension of capabilities to all Money Laundering fighters (FIUs, LEAs) and Financial Institutes (Banks, Insurance Companies, etc.). This Master-Thesis project is done at AIA, one of the partners for the HEMOLIA project in Barcelona. The objective of this thesis is to find the clusters in a network drawn by using the financial data. An extensive literature survey has been carried out and several standard algorithms related to networks have been studied and implemented. The clustering problem is a NP-hard problem and several algorithms like K-Means and Hierarchical clustering are being implemented for studying several problems relating to sociology, evolution, anthropology etc. However, these algorithms have certain drawbacks which make them very difficult to implement. The thesis suggests (a) a possible improvement to the K-Means algorithm, (b) a novel approach to the clustering problem using the Genetic Algorithms and (c) a new algorithm for finding the cluster of a node using the Genetic Algorithm.
Resumo:
Cross-sectional study that used the Social Network Index and the genogram to assess the social network of 110 family caregivers of dependent patients attended by a Home Care Service in São Paulo, Brazil. Data were analyzed using the test U of Mann-Whitney, Kruskal-Wallis and Spearman correlation. Results were considered statistically significant when p<0,05. Few caregivers participated in activities outside the home and the average number of people they had a bond was 4,4 relatives and 3,6 friends. Caregivers who reported pain and those who had a partner had higher average number of relatives who to trust. The average number of friends was higher in the group that reported use of medication for depression. Total and per capita incomes correlated with the social network. It was found that family members are the primary caregiver’s social network.
Resumo:
Introduction. This paper studies the situation of research on Catalan literature between 1976 and 2003 by carrying out a bibliometric and social network analysis of PhD theses defended in Spain. It has a dual aim: to present interesting results for the discipline and to demonstrate the methodological efficacy of scientometric tools in the humanities, a field in which they are often neglected due to the difficulty of gathering data. Method. The analysis was performed on 151 records obtained from the TESEO database of PhD theses. The quantitative estimates include the use of the UCINET and Pajek software packages. Authority control was performed on the records. Analysis. Descriptive statistics were used to describe the sample and the distribution of responses to each question. Sex differences on key questions were analysed using the Chi-squared test. Results. The value of the figures obtained is demonstrated. The information obtained on the topic and the periods studied in the theses, and on the actors involved (doctoral students, thesis supervisors and members of defence committees), provide important insights into the mechanisms of humanities disciplines. The main research tendencies of Catalan literature are identified. It is observed that the composition of members of the thesis defence committees follows Lotka's Law. Conclusions. Bibliometric analysis and social network analysis may be especially useful in the humanities and in other fields which are lacking in scientometric data in comparison with the experimental sciences.
Resumo:
[cat] L’extensió de les activitats bancàries al segle XIX va ser liderat per alguns grups socials connectats amb el comerç, que van treure profit de la seva experiència i coneixement per estendre la seva influència al voltant del món del crèdit. A la historiografia espanyola, hi ha un conjunt de treballs que s’han centrat en aquesta gent, però en molts pocs casos s’ha fet una classificació que permeti detectar el conjunt de grups econòmics que han liderat el procés de modernització financera de l’Espanya de mitjans del segle XIX. El principal objectiu del treball és l’anàlisi dels grups socials que van formar el Banco de Barcelona entre 1844 i 1854. Aquesta institució va ser important per a la història financera i bancària d’Espanya per ser pionera en la seva activitat creditícia i d’emissió: a més, la seva experiència va servir com a base en la constitució d’un sistema financer modern a Espanya. En una societat com la catalana de mitjans del segle XIX, la confiança era un factor important per explicar la decisió d’invertir. L’aparició de noves companyies i les seves necessitats d’inversió van transformar el comportaments previs. Quin va ser el comportament dels inversors potencials? Va ser el grup que hi havia al voltant del banc el que va ascendir econòmicament en els anys centrals del segle XIX? La resposta és prou clara, els membres del consell d’administració del Banc de Barcelona formaven un grup apart dins dels grups que sorgeixen a l’economia catalana en el seu conjunt.
Resumo:
A simple model of diffusion of innovations in a social network with upgrading costs is introduced. Agents are characterized by a single real variable, their technological level. According to local information, agents decide whether to upgrade their level or not, balancing their possible benefit with the upgrading cost. A critical point where technological avalanches display a power-law behavior is also found. This critical point is characterized by a macroscopic observable that turns out to optimize technological growth in the stationary state. Analytical results supporting our findings are found for the globally coupled case.
Resumo:
[cat] L’extensió de les activitats bancàries al segle XIX va ser liderat per alguns grups socials connectats amb el comerç, que van treure profit de la seva experiència i coneixement per estendre la seva influència al voltant del món del crèdit. A la historiografia espanyola, hi ha un conjunt de treballs que s’han centrat en aquesta gent, però en molts pocs casos s’ha fet una classificació que permeti detectar el conjunt de grups econòmics que han liderat el procés de modernització financera de l’Espanya de mitjans del segle XIX. El principal objectiu del treball és l’anàlisi dels grups socials que van formar el Banco de Barcelona entre 1844 i 1854. Aquesta institució va ser important per a la història financera i bancària d’Espanya per ser pionera en la seva activitat creditícia i d’emissió: a més, la seva experiència va servir com a base en la constitució d’un sistema financer modern a Espanya. En una societat com la catalana de mitjans del segle XIX, la confiança era un factor important per explicar la decisió d’invertir. L’aparició de noves companyies i les seves necessitats d’inversió van transformar el comportaments previs. Quin va ser el comportament dels inversors potencials? Va ser el grup que hi havia al voltant del banc el que va ascendir econòmicament en els anys centrals del segle XIX? La resposta és prou clara, els membres del consell d’administració del Banc de Barcelona formaven un grup apart dins dels grups que sorgeixen a l’economia catalana en el seu conjunt.
Resumo:
How have changes in communications technology affected the way that misinformation spreads through a population and persists? To what extent do differences in the architecture of social networks affect the spread of misinformation, relative to the rates and rules by which individuals transmit or eliminate different pieces of information (cultural traits)? Here, we use analytical models and individual-based simulations to study how a 'cultural load' of misinformation can be maintained in a population under a balance between social transmission and selective elimination of cultural traits with low intrinsic value. While considerable research has explored how network architecture affects percolation processes, we find that the relative rates at which individuals transmit or eliminate traits can have much more profound impacts on the cultural load than differences in network architecture. In particular, the cultural load is insensitive to correlations between an individual's network degree and rate of elimination when these quantities vary among individuals. Taken together, these results suggest that changes in communications technology may have influenced cultural evolution more strongly through changes in the amount of information flow, rather than the details of who is connected to whom.
Resumo:
The capacity to interact socially and share information underlies the success of many animal species, humans included. Researchers of many fields have emphasized the evo¬lutionary significance of how patterns of connections between individuals, or the social networks, and learning abilities affect the information obtained by animal societies. To date, studies have focused on the dynamics either of social networks, or of the spread of information. The present work aims to study them together. We make use of mathematical and computational models to study the dynamics of networks, where social learning and information sharing affect the structure of the population the individuals belong to. The number and strength of the relationships between individuals, in turn, impact the accessibility and the diffusion of the shared information. Moreover, we inves¬tigate how different strategies in the evaluation and choice of interacting partners impact the processes of knowledge acquisition and social structure rearrangement. First, we look at how different evaluations of social interactions affect the availability of the information and the network topology. We compare a first case, where individuals evaluate social exchanges by the amount of information that can be shared by the partner, with a second case, where they evaluate interactions by considering their partners' social status. We show that, even if both strategies take into account the knowledge endowments of the partners, they have very different effects on the system. In particular, we find that the first case generally enables individuals to accumulate higher amounts of information, thanks to the more efficient patterns of social connections they are able to build. Then, we study the effects that homophily, or the tendency to interact with similar partners, has on knowledge accumulation and social structure. We compare the case where individuals who know the same information are more likely to learn socially from each other, to the opposite case, where individuals who know different information are instead more likely to learn socially from each other. We find that it is not trivial to claim which strategy is better than the other. Depending on the possibility of forgetting information, the way new social partners can be chosen, and the population size, we delineate the conditions for which each strategy allows accumulating more information, or in a faster way For these conditions, we also discuss the topological characteristics of the resulting social structure, relating them to the information dynamics outcome. In conclusion, this work paves the road for modeling the joint dynamics of the spread of information among individuals and their social interactions. It also provides a formal framework to study jointly the effects of different strategies in the choice of partners on social structure, and how they favor the accumulation of knowledge in the population. - La capacité d'interagir socialement et de partager des informations est à la base de la réussite de nombreuses espèces animales, y compris les humains. Les chercheurs de nombreux domaines ont souligné l'importance évolutive de la façon dont les modes de connexions entre individus, ou réseaux sociaux et les capacités d'apprentissage affectent les informations obtenues par les sociétés animales. À ce jour, les études se sont concentrées sur la dynamique soit des réseaux sociaux, soit de la diffusion de l'information. Le présent travail a pour but de les étudier ensemble. Nous utilisons des modèles mathématiques et informatiques pour étudier la dynamique des réseaux, où l'apprentissage social et le partage d'information affectent la structure de la population à laquelle les individus appartiennent. Le nombre et la solidité des relations entre les individus ont à leurs tours un impact sur l'accessibilité et la diffusion de l'informa¬tion partagée. Par ailleurs, nous étudions comment les différentes stratégies d'évaluation et de choix des partenaires d'interaction ont une incidence sur les processus d'acquisition des connaissances ainsi que le réarrangement de la structure sociale. Tout d'abord, nous examinons comment des évaluations différentes des interactions sociales influent sur la disponibilité de l'information ainsi que sur la topologie du réseau. Nous comparons un premier cas, où les individus évaluent les échanges sociaux par la quantité d'information qui peut être partagée par le partenaire, avec un second cas, où ils évaluent les interactions en tenant compte du statut social de leurs partenaires. Nous montrons que, même si les deux stratégies prennent en compte le montant de connaissances des partenaires, elles ont des effets très différents sur le système. En particulier, nous constatons que le premier cas permet généralement aux individus d'accumuler de plus grandes quantités d'information, grâce à des modèles de connexions sociales plus efficaces qu'ils sont capables de construire. Ensuite, nous étudions les effets que l'homophilie, ou la tendance à interagir avec des partenaires similaires, a sur l'accumulation des connaissances et la structure sociale. Nous comparons le cas où des personnes qui connaissent les mêmes informations sont plus sus¬ceptibles d'apprendre socialement l'une de l'autre, au cas où les individus qui connaissent des informations différentes sont au contraire plus susceptibles d'apprendre socialement l'un de l'autre. Nous constatons qu'il n'est pas trivial de déterminer quelle stratégie est meilleure que l'autre. En fonction de la possibilité d'oublier l'information, la façon dont les nouveaux partenaires sociaux peuvent être choisis, et la taille de la population, nous déterminons les conditions pour lesquelles chaque stratégie permet d'accumuler plus d'in¬formations, ou d'une manière plus rapide. Pour ces conditions, nous discutons également les caractéristiques topologiques de la structure sociale qui en résulte, les reliant au résultat de la dynamique de l'information. En conclusion, ce travail ouvre la route pour la modélisation de la dynamique conjointe de la diffusion de l'information entre les individus et leurs interactions sociales. Il fournit également un cadre formel pour étudier conjointement les effets de différentes stratégies de choix des partenaires sur la structure sociale et comment elles favorisent l'accumulation de connaissances dans la population.
Resumo:
Peer-reviewed
Resumo:
Social interactions are a very important component in people"s lives. Social network analysis has become a common technique used to model and quantify the properties of social interactions. In this paper, we propose an integrated framework to explore the characteristics of a social network extracted from multimodal dyadic interactions. For our study, we used a set of videos belonging to New York Times" Blogging Heads opinion blog. The Social Network is represented as an oriented graph, whose directed links are determined by the Influence Model. The links" weights are a measure of the"influence" a person has over the other. The states of the Influence Model encode automatically extracted audio/visual features from our videos using state-of-the art algorithms. Our results are reported in terms of accuracy of audio/visual data fusion for speaker segmentation and centrality measures used to characterize the extracted social network.
Resumo:
Defining digital humanities might be an endless debate if we stick to the discussion about the boundaries of this concept as an academic "discipline". In an attempt to concretely identify this field and its actors, this paper shows that it is possible to analyse them through Twitter, a social media widely used by this "community of practice". Based on a network analysis of 2,500 users identified as members of this movement, the visualisation of the "who's following who?" graph allows us to highlight the structure of the network's relationships, and identify users whose position is particular. Specifically, we show that linguistic groups are key factors to explain clustering within a network whose characteristics look similar to a small world.
Resumo:
The adoption of a proper traceability system is being incorporated into meat production practices as a method of gaining consumer confidence. The various partners operating in the chain of meat production can be considered a social network, and they have the common goal of generating a communication process that can ensure each characteristic of the product, including safety. This study aimed to select the most appropriate meat traceability system “from farm to fork” that could be applied to Brazilian beef and pork production for international trade. The research was done in three steps. The first used the analytical hierarchy process (AHP) for selecting the best on-farm livestock traceability. In the second step, the actors in the meat production chain were identified to build a framework and defined each role in the network. In the third step, the selection of the traceability system was done. Results indicated that with an electronic traceability system, it is possible to acquire better connections between the links in the chain and to provide the means for managing uncertainties by creating structures that facilitate information flow more efficiently.