126 resultados para Smelting.
Resumo:
Pyatt, B. Gilmore, G. Grattan, J. Hunt, C. McLaren, S. An imperial legacy? An exploration of the environmental impact of ancient metal mining and smelting in southern Jordan. Journal of Archaeological Science. 2000. 27 pp 771-778
Resumo:
Grattan, J., Huxley, S., Karaki, L. A., Toland, H., Gilbertson, D., Pyatt, B., Saad, Z. A. (2002). 'Death . . . more desirable than life'? The human skeletal record and toxicological implications of ancient copper mining and smelting in Wadi Faynan, southwestern Jordan. Toxicology and Industrial Health, 18 (6), 297-307.
Resumo:
Grattan, J.P., Gilbertson, D.D., Hunt, C.O. (2007). The local and global dimensions of metaliferrous air pollution derived from a reconstruction of an 8 thousand year record of copper smelting and mining at a desert-mountain frontier in southern Jordan. Journal of Archaeological Science 34, 83-110
Resumo:
The use of computational modelling in examining process engineering issues is very powerful. It has been used in the development of the HIsmelt process from its concept. It is desirable to further water-cool the HIsmelt vessel to reduce downtime for replacing refractory. Water-cooled elements close to a metal bath run the risk of failure. This generally occurs when a process perturbation causes the freeze and refractory layers to come away from the water-cooled element, which is then exposed to liquid metal. The element fails as they are unable to remove all the heat. Modelling of the water-cooled element involves modelling the heat transfer, fluid flow, stress and solidification for a localised section of the reaction vessel. The complex interaction between the liquid slag and the refractory applied to the outside of thewater-cooled element is also being examined to model the wear of this layer. The model is being constructed in Physica, a CFD code developed at the University of Greenwich. Modelling of this system has commenced with modelling solidification test cases. These test cases have been used to validate the CFD code’s capability to model the solidification in this system. A model to track the penetration of slag into refractory has also been developed and tested.
Resumo:
Although exogenous factors such as pollutants can act on endogenous drivers (e.g. dispersion) of populations and create spatially autocorrelated distributions, most statistical techniques assume independence of error terms. As there are no studies on metal soil pollutants and microarthropods that explicitly analyse this key issue, we completed a field study of the correlation between Oribatida and metal concentrations in litter, organic matter and soil in an attempt to account for spatial patterns of both metals and mites. The 50-m wide study area had homogenous macroscopic features, steep Pb and Cu gradients and high levels of Zn and Cd. Spatial models failed to detect metal-oribatid relationships because the observed latitudinal and longitudinal gradients in oribatid assemblages were independent of the collinear gradients in the concentration of metals. It is therefore hypothesised that other spatially variable factors (e.g. fungi, reduced macrofauna) affect oribatid assemblages, which may be influenced by metals only indirectly. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Trace elements may present an environmental hazard in the vicinity of mining and smelting activities. However, the factors controlling their distribution and transfer within the soil and vegetation systems are not always well defined. Total concentrations of up to 15,195 mg center dot kg (-1) As, 6,690 mg center dot kg(-1) Cu, 24,820 mg center dot kg(-1) Pb and 9,810 mg center dot kg(-1) Zn in soils, and 62 mg center dot kg(-1) As, 1,765 mg center dot kg(-1) Cu, 280 mg center dot kg(-1) Pb and 3,460 mg center dot kg (-1) Zn in vegetation were measured. However, unusually for smelters and mines of a similar size, the elevated trace element concentrations in soils were found to be restricted to the immediate vicinity of the mines and smelters (maximum 2-3 km). Parent material, prevailing wind direction, and soil physical and chemical characteristics were found to correlate poorly with the restricted trace element distributions in soils. Hypotheses are given for this unusual distribution: (1) the contaminated soils were removed by erosion or (2) mines and smelters released large heavy particles that could not have been transported long distances. Analyses of the accumulation of trace elements in vegetation (median ratios: As 0.06, Cu 0.19, Pb 0.54 and Zn 1.07) and the percentage of total trace elements being DTPA extractable in soils (median percentages: As 0.06%, Cu 15%, Pb 7% and Zn 4%) indicated higher relative trace element mobility in soils with low total concentrations than in soils with elevated concentrations.
Resumo:
Trace elements may present an environmental hazard in the vicinity of mining and smelting activities. However, the factors controlling trace element distribution in soils around ancient and modem mining and smelting areas are not always clear. Tharsis, Riotinto and Huelva are located in the Iberian Pyrite Belt in SW Spain. Tharsis and Riotinto mines have been exploited since 2500 B.C., with intensive smelting taking place. Huelva, established in 1970 and using the Flash Furnace Outokumpu process, is currently one of the largest smelter in the world. Pyrite and chalcopyrite ore have been intensively smelted for Cu. However, unusually for smelters and mines of a similar size, the elevated trace element concentrations in soils were found to be restricted to the immediate vicinity of the mines and smelters, being found up to a maximum of 2 kin from the mines and smelters at Tharsis, Riotinto and Huelva. Trace element partitioning (over 2/3 of trace elements found in the residual immobile fraction of soils at Tharsis) and soil particles examination by SEM-EDX showed that trace elements were not adsorbed onto soil particles, but were included within the matrix of large trace element-rich Fe silicate slag particles (i.e. 1 min circle divide at least 1 wt.% As, Cu and Zn, and 2 wt.% Pb). Slag particle large size (I mm 0) was found to control the geographically restricted trace element distribution in soils at Tharsis, Riotinto and Huelva, since large heavy particles could not have been transported long distances. Distribution and partitioning indicated that impacts to the environment as a result of mining and smelting should remain minimal in the region. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Toxic trace elements present an environmental hazard in the vicinity of mining and smelting activities. However. the processes of transfer of these elements to groundwater and to plants are not always clear. Tharsis mine. in the Iberian pyrite belt (SW Spain), has been exploited since 2500 BC, with extensive smelting, taking place front the 1850S until the 1920s. Sixty four soil (mainly topsoils) and vegetation samples were collected in February 2001 and analysed by ICP-AES for 23 elements. Concentrations are 6-6300 mg kg(-1) As and 14-24800 mg kg(-1) Pb in soils, and 0.20-9 mg kg(-1) As and 2-195 mg Pb in vegetation. Trace element concentrations decrease rapidly away from the mine. with As and Pb concentrations in the range 6-1850 mg kg(-1) (median 22 mg kg(-1)) and 14-31 mg, kg(-1) (median 43 mg, kg(-1)), respectively, 1 km away from the mine. These concentrations are low when compared to other well-studied mining and smelting areas (e.g. 600 mg kg(-1) As at 8 km from Yellowknife smelter, Canada; >100 mg kg(-1) Pb over 270 km(2) around the Pb-Zn Port Pirie smelter. South Australia: mean of 1419 mg kg(-1) Pb around Aberystwyth smelter, Wales, UK). The high metal content of the vegetation and the low soil pH (mean pH 4.93) indicate the potential for trace element mobility which Could explain the relatively low concentration of metals in Tharsis topsoils and cause threats to plans to redevelop the Tharsis area as an orange plantation.
Resumo:
The sequential extraction procedure of Zinc and lead performed in a Brazilian soil showed that it presents high pollution potential once over 90% of total lead is present in fractions where the metals can be easily mobilized. The fraction contents are as follow: F1 = 174 and 15 mg kg-1; F2 = 3155 and 9.7 mg kg -1; F3 = 99 and 1.6 mg kg -1; Residual fraction = 38 and 5.5 mg kg -1 for lead and zinc, respectively. The comparison with non contaminated soil only Pb 2+ concentration is above its intervention reference concentration, 900 mg kg -1.
Resumo:
This dissertation examines the global technological and environmental history of copper smelting and the conflict that developed between historic preservation and environmental remediation at major copper smelting sites in the United States after their productive periods ended. Part I of the dissertation is a synthetic overview of the history of copper smelting and its environmental impact. After reviewing the basic metallurgy of copper ores, the dissertation contains successive chapters on the history of copper smelting to 1640, culminating in the so-called German, or Continental, processing system; on the emergence of the rival Welsh system during the British industrial revolution; and on the growth of American dominance in copper production the late 19th and early 20th centuries. The latter chapter focuses, in particular, on three of the most important early American copper districts: Michigan’s Keweenaw Peninsula, Tennessee’s Copper Basin, and Butte-Anaconda, Montana. As these three districts went into decline and ultimately out of production, they left a rich industrial heritage and significant waste and pollution problems generated by increasingly more sophisticated technologies capable of commercially processing steadily growing volumes of decreasingly rich ores. Part II of the dissertation looks at the conflict between historic preservation and environmental remediation that emerged locally and nationally in copper districts as they went into decline and eventually ceased production. Locally, former copper mining communities often split between those who wished to commemorate a region’s past importance and develop heritage tourism, and local developers who wished to clear up and clean out old industrial sites for other purposes. Nationally, Congress passed laws in the 1960s and 1970s mandating the preservation of historical resources (National Historic Preservation Act) and laws mandating the cleanup of contaminated landscapes (CERCLA, or Superfund), objectives sometimes in conflict – especially in the case of copper smelting sites. The dissertation devotes individual chapters to the conflicts that developed between environmental remediation, particularly involving the Environmental Protection Agency and the heritage movement in the Tennessee, Montana, and Michigan copper districts. A concluding chapter provides a broad model to illustrate the relationship between industrial decline, federal environmental remediation activities, and the growth of heritage consciousness in former copper mining and smelting areas, analyzes why the outcome varied in the three areas, and suggests methods for dealing with heritage-remediation issues to minimize conflict and maximize heritage preservation.
Resumo:
The purpose of this experimental work was to determine with the utilization of a laboratory sized induction furnace a method whereby a high-iron Montana chromite concentrate could be successfully smelted to yield a product suitable for the subsequent production of standard ferrochrome.
Resumo:
In 1939 the total world production of crude chromite was approximately 1,167,000 metric tons; of which the United States produced only 3,672 metric tons and imported over 317,500 metric tons. Imports came mostly from the Philippine Islands, Cuba, South Africa, and Rhodesia.