907 resultados para Small-area
Resumo:
BACKGROUND: In general cantons regulate and control the Swiss health service system; patient flows within and between cantons are thereby partially disregarded. This paper develops an alternative spatial model, based upon the construction of orthopedic hospital service areas (HSAOs), and introduces indices for the analysis of patient streams in order to identify areas, irrespective of canton, with diverse characteristics, importance, needs, or demands. METHODS: HSAOs were constructed using orthopedic discharge data. Patient streams between the HSAOs were analysed by calculating three indices: the localization index (% local residents discharged locally), the netindex (the ratio of discharges of nonlocal incoming residents to outgoing local residents), and the market share index (% of local resident discharges of all discharges in local hospitals). RESULTS: The 85 orthopedic HSAOs show a median localization index of 60.8%, a market share index of 75.1%, and 30% of HSAOs have a positive netindex. Insurance class of bed, admission type, and patient age are partially but significantly associated with those indicators. A trend to more centrally provided health services can be observed not only in large urban HSAOs such as Geneva, Bern, Basel, and Zurich, but also in HSAOs in mountain sport areas such as Sion, Davos, or St.Moritz. Furthermore, elderly and emergency patients are more frequently treated locally than younger people or those having elective procedures. CONCLUSION: The division of Switzerland into HSAOs provides an alternative spatial model for analysing and describing patient streams for health service utilization. Because this small area model allows more in-depth analysis of patient streams both within and between cantons, it may improve support and planning of resource allocation of in-patient care in the Swiss healthcare system.
Resumo:
BACKGROUND Avoidable hospitalizations (AH) are hospital admissions for diseases and conditions that could have been prevented by appropriate ambulatory care. We examine regional variation of AH in Switzerland and the factors that determine AH. METHODS We used hospital service areas, and data from 2008-2010 hospital discharges in Switzerland to examine regional variation in AH. Age and sex standardized AH were the outcome variable, and year of admission, primary care physician density, medical specialist density, rurality, hospital bed density and type of hospital reimbursement system were explanatory variables in our multilevel poisson regression. RESULTS Regional differences in AH were as high as 12-fold. Poisson regression showed significant increase of all AH over time. There was a significantly lower rate of all AH in areas with more primary care physicians. Rates increased in areas with more specialists. Rates of all AH also increased where the proportion of residences in rural communities increased. Regional hospital capacity and type of hospital reimbursement did not have significant associations. Inconsistent patterns of significant determinants were found for disease specific analyses. CONCLUSION The identification of regions with high and low AH rates is a starting point for future studies on unwarranted medical procedures, and may help to reduce their incidence. AH have complex multifactorial origins and this study demonstrates that rurality and physician density are relevant determinants. The results are helpful to improve the performance of the outpatient sector with emphasis on local context. Rural and urban differences in health care delivery remain a cause of concern in Switzerland.
Resumo:
The three articles that comprise this dissertation describe how small area estimation and geographic information systems (GIS) technologies can be integrated to provide useful information about the number of uninsured and where they are located. Comprehensive data about the numbers and characteristics of the uninsured are typically only available from surveys. Utilization and administrative data are poor proxies from which to develop this information. Those who cannot access services are unlikely to be fully captured, either by health care provider utilization data or by state and local administrative data. In the absence of direct measures, a well-developed estimation of the local uninsured count or rate can prove valuable when assessing the unmet health service needs of this population. However, the fact that these are “estimates” increases the chances that results will be rejected or, at best, treated with suspicion. The visual impact and spatial analysis capabilities afforded by geographic information systems (GIS) technology can strengthen the likelihood of acceptance of area estimates by those most likely to benefit from the information, including health planners and policy makers. ^ The first article describes how uninsured estimates are currently being performed in the Houston metropolitan region. It details the synthetic model used to calculate numbers and percentages of uninsured, and how the resulting estimates are integrated into a GIS. The second article compares the estimation method of the first article with one currently used by the Texas State Data Center to estimate numbers of uninsured for all Texas counties. Estimates are developed for census tracts in Harris County, using both models with the same data sets. The results are statistically compared. The third article describes a new, revised synthetic method that is being tested to provide uninsured estimates at sub-county levels for eight counties in the Houston metropolitan area. It is being designed to replicate the same categorical results provided by a current U.S. Census Bureau estimation method. The estimates calculated by this revised model are compared to the most recent U.S. Census Bureau estimates, using the same areas and population categories. ^
Resumo:
Health departments, research institutions, policy-makers, and healthcare providers are often interested in knowing the health status of their clients/constituents. Without the resources, financially or administratively, to go out into the community and conduct health assessments directly, these entities frequently rely on data from population-based surveys to supply the information they need. Unfortunately, these surveys are ill-equipped for the job due to sample size and privacy concerns. Small area estimation (SAE) techniques have excellent potential in such circumstances, but have been underutilized in public health due to lack of awareness and confidence in applying its methods. The goal of this research is to make model-based SAE accessible to a broad readership using clear, example-based learning. Specifically, we applied the principles of multilevel, unit-level SAE to describe the geographic distribution of HPV vaccine coverage among females aged 11-26 in Texas.^ Multilevel (3 level: individual, county, public health region) random-intercept logit models of HPV vaccination (receipt of ≥ 1 dose Gardasil® ) were fit to data from the 2008 Behavioral Risk Factor Surveillance System (outcome and level 1 covariates) and a number of secondary sources (group-level covariates). Sampling weights were scaled (level 1) or constructed (levels 2 & 3), and incorporated at every level. Using the regression coefficients (and standard errors) from the final models, I simulated 10,000 datasets for each regression coefficient from the normal distribution and applied them to the logit model to estimate HPV vaccine coverage in each county and respective demographic subgroup. For simplicity, I only provide coverage estimates (and 95% confidence intervals) for counties.^ County-level coverage among females aged 11-17 varied from 6.8-29.0%. For females aged 18-26, coverage varied from 1.9%-23.8%. Aggregated to the state level, these values translate to indirect state estimates of 15.5% and 11.4%, respectively; both of which fall within the confidence intervals for the direct estimates of HPV vaccine coverage in Texas (Females 11-17: 17.7%, 95% CI: 13.6, 21.9; Females 18-26: 12.0%, 95% CI: 6.2, 17.7).^ Small area estimation has great potential for informing policy, program development and evaluation, and the provision of health services. Harnessing the flexibility of multilevel, unit-level SAE to estimate HPV vaccine coverage among females aged 11-26 in Texas counties, I have provided (1) practical guidance on how to conceptualize and conduct modelbased SAE, (2) a robust framework that can be applied to other health outcomes or geographic levels of aggregation, and (3) HPV vaccine coverage data that may inform the development of health education programs, the provision of health services, the planning of additional research studies, and the creation of local health policies.^
Resumo:
Background: Intra-urban inequalities in mortality have been infrequently analysed in European contexts. The aim of the present study was to analyse patterns of cancer mortality and their relationship with socioeconomic deprivation in small areas in 11 Spanish cities. Methods: It is a cross-sectional ecological design using mortality data (years 1996-2003). Units of analysis were the census tracts. A deprivation index was calculated for each census tract. In order to control the variability in estimating the risk of dying we used Bayesian models. We present the RR of the census tract with the highest deprivation vs. the census tract with the lowest deprivation. Results: In the case of men, socioeconomic inequalities are observed in total cancer mortality in all cities, except in Castellon, Cordoba and Vigo, while Barcelona (RR = 1.53 95%CI 1.42-1.67), Madrid (RR = 1.57 95%CI 1.49-1.65) and Seville (RR = 1.53 95%CI 1.36-1.74) present the greatest inequalities. In general Barcelona and Madrid, present inequalities for most types of cancer. Among women for total cancer mortality, inequalities have only been found in Barcelona and Zaragoza. The excess number of cancer deaths due to socioeconomic deprivation was 16,413 for men and 1,142 for women. Conclusion: This study has analysed inequalities in cancer mortality in small areas of cities in Spain, not only relating this mortality with socioeconomic deprivation, but also calculating the excess mortality which may be attributed to such deprivation. This knowledge is particularly useful to determine which geographical areas in each city need intersectorial policies in order to promote a healthy environment.
Resumo:
Conference sponsored by the American Statistical Association, Committee on Small-Area Statistics.
Geohydrology and model analysis for water-supply management in a small area of west-central Kansas /
Resumo:
Mode of access: Internet.
Resumo:
"September 1949"
Resumo:
"June 1995."
Resumo:
The paper presents a framework for small area population estimation that enables users to select a method that is fit for the purpose. The adjustments to input data that are needed before use are outlined, with emphasis on developing consistent time series of inputs. We show how geographical harmonization of small areas, which is crucial to comparisons over time, can be achieved. For two study regions, the East of England and Yorkshire and the Humber, the differences in output and consequences of adopting different methods are illustrated. The paper concludes with a discussion of how data, on stream since 1998, might be included in future small area estimates.
Resumo:
The region treated in the following report is a small area of about one square mile near Pacoima, California. It consists of a group of small hills that that form the western abutment of the Hansen Dam. It is underlain by a section of intrusives, sediments, and extrusives, which may be subdivided into four groups.
The oldest rocks form the Dimebere complex of Jurassic (?) plutonic rocks, pegmatites, and schists. Lying uncomformably on this is a series of alternating terrestrial sandstones and bassalts of Tertiary age. These are unconformably overlain in turn by the Hansen Dam formation, a series of marine shales and sandstone correlated with the Temblor by the fossil contact. Finally into these strata was intruded the Munglish andesite.
These strata form a shallow, plunging anticline, whose axis trends slightly east of north and lies in the center of the hills. The unconformities have been offset in several places by a series of faults apparently related to the anticline.
A complete outline of the geologic history is included in the report.