923 resultados para Slow release formulations
Resumo:
The effect of Bokashi (B, a fermented compost), slow-release fertilizers (SRFs) and their combined application on mycorrhizal colonization (MC), soil invertase, cellulase, acid (AcP) and alkaline (AlP) phosphatases activities and maize (Zea mays L.) yield was investigated in terrace (TS) and valley (VS) soils in Oaxaca, Mexico. A complete randomized design, seven fertilizer treatments and four replications were used: unamended control (C); conventional fertilization (90-46-00 NPK) (CF); B; SRF1 (Multigro 6®, 21-14-10 NPK); SRF2 (Multigro 3®, 24-05-14 NPK); B+SRF1; B+SRF2. Highest root colonization percentage: CF in VS, and SRF2 in TS. Highest extraradical mycelium length: B, B+SRF1, CF in VS, and B+SRF1 in TS. In both soils, B increased the spore number. Highest AcP activity: B, SRF2 in VS, and B+SRF1, B+SRF2 in TS. Highest AlP activity: B+SRF1, CF in VS, and C in TS. Highest invertase activity: B+SRF1, SRF2, CF in VS, and B in TS. Grain yield only increased with B in VS. The significant interaction soil type × fertilizer treatment for the majority of the biological soil properties analyzed suggests that MC and soil enzyme activity response to fertilization was influenced by soil type. Bokashi, alone or combined with SRFs improves biological soil fertility in maize fields.
Resumo:
The production of agricultural and horticultural products requires the use of nitrogenous fertiliser that can cause pollution of surface and ground water and has a large carbon footprint as it is mainly produced from fossil fuels. The overall objective of this research project was to investigate fast pyrolysis and in-situ nitrogenolysis of biomass and biogenic residues as an alternative route to produce a sustainable solid slow release fertiliser mitigating the above stated problems. A variety of biomasses and biogenic residues were characterized by proximate analysis, ultimate analysis, thermogravimetric analysis (TGA) and Pyrolysis – Gas chromatography – Mass Spectroscopy (Py–GC–MS) for their potential use as feedstocks using beech wood as a reference material. Beech wood was virtually nitrogen free and therefore suitable as a reference material as added nitrogen can be identified as such while Dried Distillers Grains with Solubles (DDGS) and rape meal had a nitrogen content between 5.5wt.% and 6.1wt.% qualifying them as high nitrogen feedstocks. Fast pyrolysis and in-situ nitrogenolysis experiments were carried out in a continuously fed 1kg/h bubbling fluidized bed reactor at around 500°C quenching the pyrolysis vapours with isoparaffin. In-situ nitrogenolysis experiments were performed by adding ammonia gas to the fast pyrolysis reactor at nominal nitrogen addition rates between 5wt.%C and 20wt.%C based on the dry feedstock’s carbon content basis. Mass balances were established for the processing experiments. The fast pyrolysis and in-situ nitrogenolysis products were characterized by proximate analysis, ultimate analysis and GC– MS. High liquid yields and good mass balance closures of over 92% were obtained. The most suitable nitrogen addition rate for the in-situ nitrogenolysis experiments was determined to be 12wt.%C on dry feedstock carbon content basis. However, only a few nitrogen compounds that were formed during in-situ nitrogenolysis could be identified by GC–MS. A batch reactor process was developed to thermally solidify the fast pyrolysis and in-situ nitrogenolysis liquids of beech wood and Barley DDGS producing a brittle solid product. This was obtained at 150°C with an addition of 2.5wt% char (as catalyst) after a processing time of 1h. The batch reactor was also used for modifying and solidifying fast pyrolysis liquids derived from beech wood by adding urea or ammonium phosphate as post processing nitrogenolysis. The results showed that this type of combined approach was not suitable to produce a slow release fertiliser, because the solid product contained up to 65wt.% of highly water soluble nitrogen compounds that would be released instantly by rain. To complement the processing experiments a comparative study via Py–GC–MS with inert and reactive gas was performed with cellulose, hemicellulose, lignin and beech wood. This revealed that the presence of ammonia gas during analytical pyrolysis did not appear to have any direct impact on the decomposition products of the tested materials. The chromatograms obtained showed almost no differences between inert and ammonia gas experiments indicating that the reaction between ammonia and pyrolysis vapours does not occur instantly. A comparative study via Fourier Transformed Infrared Spectroscopy of solidified fast pyrolysis and in-situ nitrogenolysis products showed that there were some alterations in the spectra obtained. A shift in frequencies indicating C=O stretches typically related to the presence of carboxylic acids to C=O stretches related to amides was observed and no double or triple bonded nitrogen was detected. This indicates that organic acids reacted with ammonia and that no potentially harmful or non-biodegradable triple bonded nitrogen compounds were formed. The impact of solid slow release fertiliser (SRF) derived from pyrolysis and in-situ nitrogenolysis products from beech wood and Barley DDGS on microbial life in soils and plant growth was tested in cooperation with Rothamsted Research. The microbial incubation tests indicated that microbes can thrive on the SRFs produced, although some microbial species seem to have a reduced activity at very high concentrations of beech wood and Barley DDGS derived SRF. The plant tests (pot trials) showed that the application of SRF derived from beech wood and barley DDGS had no negative impact on germination or plant growth of rye grass. The fertilizing effect was proven by the dry matter yields in three harvests after 47 days, 89 days and 131 days. The findings of this research indicate that in general a slow release fertiliser can be produced from biomass and biogenic residues by in-situ nitrogenolysis. Nevertheless the findings also show that additional research is necessary to identify which compounds are formed during this process.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
2008
Resumo:
2016
Resumo:
After a large scale field trial performed in central Brazil envisaging the control of Chagas' disease vectors in an endemic area colonized by Triatoma infestans and T. sordida the cost-effectiveness analysis for each insecticide/formulation was performed. It considered the operational costs and the prices of insecticides and formulations, related to the activity and persistence of each one. The end point was considered to be less than 90% of domicilliary unitis (house + annexes) free of infestation. The results showed good cost-effectiveness for a slow-release emulsifiable suspension (SRES) based on PVA and containing malathion as active ingredient, as well as for the pyrethroids tested in this assay-cyfluthrin, cypermethrin, deltamethrin and permethrin.
Resumo:
BACKGROUND: Vascular healing of intracoronary stents has been shown to be delayed in drug-eluting stents (DES) due to the cytotoxic compounds on the stent surface that prevent stent ingrowth and endothelialization. The lack of endothelialization explains the occurrence of late and very late stent thrombosis in DES. MATERIALS AND METHODS: In 11 house swines (body weight 38-45 kg), 3 stents were implanted randomly into the 3 large epicardial coronary arteries, namely a bare-metal stent (BMS), a sirolimus-eluting stent with slow-release (SES) and a SES with extended-release (SESXR). Stent length was 18 mm, and stent diameter 3 mm. All stents were of identical design. Animals were followed for 3 (n = 3), 7 (n = 4) and 14 (n = 4) days, respectively. One animal died before implantation due to hyperthermia. On the day of explantation, the animals were euthanized and endothelialization was tested by scanning electron microscopy after drying and sputtering the samples. Endothelial coverage was determined semiquantitatively by 2 observers. RESULTS: Endothelialization was more rapid with BMS and SESXR than SES at 3 and 14 days. At 7 days there were no significant differences between the 2 SES. CONCLUSIONS: Endothelialization of intracoronary stents is faster with BMS and SESXR at 3 days than with SES. These differences persist at 14 days, suggesting delayed vascular healing with the slow-release SES.
Resumo:
The bioequivalence of sustained release theophylline formulations, marketed in the United Kingdom, has been investigated in relation to the co-administration of food in both single dose and steady state volunteer studies. The effect of food on pharmacokinetic parameters and their clinical relevance was researched. Experimentation using drug induced modification of gastric motility to ascertain the component influences of the rate of gastric emptying on the absorption of theophylline from sustained release formulations was conducted. Prolongation of time to maximum plasma theophylline concentration by food reported in the literature and its clinical importance was investigated in once daily compared with twice daily administration of sustained release theophylline formulations and smoking habit. The correlation between saliva and plasma theophylline concentrations as a means of developing a non-invasive sampling techniques was examined. Data obtained from in vitro dissolution studies was compared with in vivo results. This thesis has shown no significant differences occurred in the pharmacokinetic parameters measured between sustained release formulations available in the United Kingdom. The investigations into the influence of food on prolongation of time to maximum plasma theophylline concentration and other measured pharmacokinetic parameters demonstrated no important pharmacokinetic or clinical effects. Smoking adults taking sustained release theophylline formulations had similar drug clearances to those reported in the literature for smokers taking plain uncoated theophylline formulations. KEY WORDS Bioequivalence Theophylline Sustained Release Food Pharmacokinetics RONALD PURKISS SUBMITTED FOR
Resumo:
Tese de Doutoramento em Biologia das Plantas - MAP BIOPLANT
Resumo:
We reviewed the control of transmission of leishmaniasis regarding chemotherapy, reservoirs elimination, vaccination and insect control through the use of chemical insecticides. We also discussed complementary measures like monitoring traps, impregnated bednets and curtains, repelents, pheromones, biological control, etc. A cost comparison of insecticide interventions through the use of products belonging to the four main chemical groups was also alone, comparing together conventional formulations versus a slow-release insecticide developed by the Núcleo de Pesquisas de Produtos Naturais, Universidade Federal do Rio de Janeiro. We finally did recommendations on the situation that would justify an insecticide intervention to control sandflies.
Resumo:
Drug-eluting microspheres are used for embolization of hypervascular tumors and allow for local controlled drug release. Although the drug release from the microspheres relies on fast ion-exchange, so far only slow-releasing in vitro dissolution methods have been correlated to in vivo data. Three in vitro release methods are assessed in this study for their potential to predict slow in vivo release of sunitinib from chemoembolization spheres to the plasma, and fast local in vivo release obtained in an earlier study in rabbits. Release in an orbital shaker was slow (t50%=4.5h, 84% release) compared to fast release in USP 4 flow-through implant cells (t50%=1h, 100% release). Sunitinib release in saline from microspheres enclosed in dialysis inserts was prolonged and incomplete (t50%=9 days, 68% release) due to low drug diffusion through the dialysis membrane. The slow-release profile fitted best to low sunitinib plasma AUC following injection of sunitinib-eluting spheres. Although limited by lack of standardization, release in the orbital shaker fitted best to local in vivo sunitinib concentrations. Drug release in USP flow-through implant cells was too fast to correlate with local concentrations, although this method is preferred to discriminate between different sphere types.
Resumo:
The intensive use of pesticides have contaminated the soil and groundwater. The application of herbicides as controlled release formulations may reduce the environmental damage related to their use because it may optimize the efficiency of the active ingredient and reducing thus the recommended dose. The objective of this study was to evaluate the persistence of the herbicide atrazine applied as commercial formulation (COM) and as controlled release formulation (xerogel - XER) in Oxisol. The experimental design used was split-plot randomized-blocks with four replications, in a (2 x 6) + 1 arrangement. The two formulations (COM and XER) were assigned to main plots and different atrazine concentrations (0, 3.200, 3.600, 4.200, 5.400 and 8.000 g atrazine ha-1) were assigned to sub-plots. Persistence was determined by means of dissipation kinetics and bioavailability tests. The methodology of bioassays to assess the atrazine availability is efficient and enables to distinguish the tested formulations. The availability of atrazine XER is higher than the commercial in two different periods: up to 5 days after herbicide application and at the 35th day after application. The XER formulation tends to be more persistent in relation to COM formulation.