933 resultados para Slip casting.


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A tangential filtration process was implemented in this study using porous ceramic tubes made of alpha-alumina produced by the slip-casting technique. These tubes were sintered at 1450 degrees C and characterized by mercury intrusion porosimetry, which revealed a mean pore size of 0.5 mu m. The tubes were chemically impregnated with a zirconium citrate solution, after which they were calcined and heat treated at temperatures of up to 600 and 900 degrees C to eliminate volatile organic compounds and transform the zirconium citrate into zirconium oxide impregnated in the alumina in the form of nanoparticle agglomerates. The microporous pipes were tested on a microfiltration hydraulic system to analyze their performance in the demulsification of sunflower oil and water mixtures. The fluid-dynamic parameters of Reynolds number and transmembrane pressure were varied in the process. The volume of permeate was analyzed by measuring the Total Organic Carbon concentration (TOC), which indicated 99% of oil phase retention. The emulsified mixture was characterized by optical microscopy, while the morphology and composition of the impregnated microporous tubes were analyzed by scanning electron microscopy (SEM). Quantification of the TOC values for the tube impregnated once at 600 degrees C showed the best demulsification performance, with the concentration on permeate smaller than 10 mg/L. The impregnated tube sintered once at 900 degrees C presented low carbon concentration (smaller than 20 mg/L), has the advantage of presenting the greatest trans-membrane flux in relation to the other microporous tube. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this study, a bioactive zirconia-toughened alumina (ZTA) composite was developed for orthopedic applications. This composite was obtained by slip casting of suspension powder mixtures.Biomimetic processes were used to grow a bone-like apatite layer on composite substrates using sodium silicate solution as a nucleating agent and simulated body fluids. The composites, with or without coating, were characterized by diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy and scanning electron microscopy (SEM) with energy dispersion spectroscopy (EDS), and their apparent density was determined by the Archimedes method. The composites obtained by this process possessed the expected stiffness and dimensions and their density values were similar to those of the composite's theoretical density (98.8%TD). The morphology of the hydroxyapatite formed on the composite surface was homogeneous and composed of small globules, characterizing a carbonated hydroxyapatite. The results of the tests indicated that the method employed to produce the composite and its coating was efficient under the conditions of this study. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Reabilitação Oral - FOAR

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

En este trabajo, materiales de tipo alúmina/Y-TZP (ZrO2 tetragonal, estabilizada con 3 mol. % Y2O3), como sistema cerámico popular por sus mejoradas propiedades mecánicas en comparación con las cerámicas de alúmina puras, han sido estudiados en términos de propiedades mecánicas y tensiones residuales. El novedoso método de colado en cinta, consistente en el apilamiento de cintas de cerámica verde a temperatura ambiente y el uso de bajas presiones, se ha escogido para la presente investigación con el fin de poder aprovechar al máximo el futuro desarrollo de materiales laminados de alúmina-óxido de circonio. Se han determinado las propiedades de los materiales obtenidos por este nuevo método de procesamiento comparándolas con las de los materiales obtenidos por “slip casting, con el fin de analizar si el método propuesto afecta a la microestructura y, por tanto, a las propiedades mecánicas y tensiones residuales propias de estos materiales. Para analizar la idoneidad del proceso de fabricación, utilizado para evitar la presencia de discontinuidades en las intercaras entre las láminas así como otros fenómenos que puedan interferir con las propiedades mecánicas, se estudiaron materiales cerámicos con la misma composición en cintas. Por otra parte también se analizó el efecto de la adición de óxido de circonio sobre la aparición de tensiónes residuales en cerámicas Al2O3/Y-TZP, teniendo en cuenta su notable influencia sobre las propiedades microestructurales y mecánicas de los materiales, así como el requisito de co-sinterización de capas con diferentes materiales compuestos en materiales laminados. La caracterización del material incluye la determinación de la densidad, el análisis de la microestructura, la obtención de las propiedades mecánicas (módulo de elasticidad, dureza, resistencia a la flexión y tenacidad de fractura) así como de las tensiones residuales. En combinación con otros métodos de medida tradicionales, la nanoindentación también se empleó como una técnica adicional para la medida del módulo de elasticidad y de la dureza. Por otro lado, diferentes técnicas de difracción con neutrones, tanto las basadas en longitud de onda constante (CW) como en tiempo de vuelo (TOF), han sido empleadas para la medición fiable de la deformación residual a través del grosor en muestras a granel. Las tensiones residuales fueron determinadas con elevada precisión, aplicando además métodos de análisis apropiados, como por ejemplo el refinamiento de Rietveld. Las diferentes fases en cerámicas sinterizadas, especialmente las de zirconia, se examinaron con detalle mediante el análisis de Rietveld, teniendo en cuenta el complicado polimorfismo del Óxido de Zirconio (ZrO2) así como las posibles transformaciones de fase durante el proceso de fabricación. Los efectos del contenido de Y-TZP en combinación con el nuevo método de procesamiento sobre la microestructura, el rendimiento mecánico y las tensiones residuales de los materiales estudiados (Al2O3/Y-TZP) se resumen en el presente trabajo. Finalmente, los mecanismos de endurecimiento, especialmente los relacionados con las tensiones residuales, son igualmente discutidos. In present work, Alumina/Y-TZP (tetragonal ZrO2 stabilized with 3 mol% Y2O3) materials, as an popular ceramic system with improved mechanical properties compared with the pure alumina ceramics, have been studied in terms of mechanical properties and residual stresses. The novel tape casting method, which involved the stacking of green ceramics tapes at room temperature and using low pressures, is selected for manufacturing and investigation, in order to take full advantage of the future development of alumina-zirconia laminated materials. Features of materials obtained by the new processing method are determined and compared with those of materials obtained by conventional slip casting in a plaster mold, in order to study whether the proposed method of processing affects microstructure and thereby the mechanical properties and residual stresses characteristics of materials. To analyse the adequacy of the manufacturing process used to avoid the presence of discontinuities at the interfaces between the sheets and other phenomena that interfere with the mechanical properties, ceramic materials with the same composition in tapes were investigated. Moreover, the effect of addition of zirconia on residual stress development of Al2O3/Y-TZP ceramics were taken into investigations, considering its significantly influence on the microstructure and mechanical properties of materials as well as the requirement of co-sintering of layers with different composites in laminated materials. The characterization includes density, microstructure, mechanical properties (elastic modulus, hardness, flexure strength and fracture toughness) and residual stresses. Except of the traditional measurement methods, nanoindentation technique was also used as an additional measurement of the elastic modulus and hardness. Neutron diffraction, both the constant-wavelength (CW) and time-of-flight (TOF) neutron diffraction techniques, has been used for reliable through-thickness residual strain measurement in bulk samples. Residual stresses were precisely determined combined with appropriate analysis methods, e.g. the Rietveld refinement. The phase compositions in sintered ceramics especially the ones of zirconia were accurately examined by Rietveld analysis, considering the complex polymorph of ZrO2 and the possible phase transformation during manufacturing process. Effects of Y-TZP content and the new processing method on the microstructure, mechanical performance and residual stresses were finally summarized in present studied Al2O3/Y-TZP materials. The toughening mechanisms, especially the residual stresses related toughening, were theoretically discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A novel processing method for the fast and economic production of hollow ceramic components has been developed by combining in situ coagulation moulding with a modified version of the technique of rotary moulding[Binner, J. G. P., Al-Dawery, I. A., Tari, G. and Yan, Y., Rotary casting technique. UK Patent application No. 0506349.0, March 2005], the latter being adapted from the polymer industry. The process was found to require a high solids content suspension, hence development work was performed in this direction though in the end a new, commercial suspension was utilised. Of the three forming routes of gel casting, direct coagulation casting and in situ coagulation moulding, the latter was found to be the most promising for the new process of rotary moulding of ceramics. Due to the low value of clay-based ceramics, a new low cost coagulant was identified and the effect of lactone concentration and temperature on setting time determined. Following substantial optimisation work, it was found that a two-speed approach to multi-axial rotation was the most successful; medium sized cream jugs could be produced in just 7 min. With respect to mould materials, the porous resin normally used for pressure casting of sanitary ware was found to be the best option, though since this is quite expensive conventional plaster-of-paris moulds were found to be a suitable material to enable companies, particularly SMEs, to become familiar with the technology whilst avoiding high costs for trials. The processed articles could be successfully fired and glazed using gas-fired kilns with no sign of any black cores. Major advantages of the process include the ability to precisely calculate the amount of ceramic slip required, eliminating either slip wastage or the need to pour used slip back into the virgin material as currently happens with slip casting. In addition, since the precursor suspension has a very high solids content, the time and energy required to dry the green product and associated moulds has been considerably reduced. © 2008 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Este relatório descreve o trabalho realizado durante um estágio na empresa Vista Alegre Atlantis. Neste estágio, propunha-se diminuir ou eliminar um problema, um defeito observado como a asa descolada numa chávena de porcelana. Através do estudo das fases do processo de fabrico das chávenas, que se focou na conformação das asas e na secagem, concluiu-se que se tratava de um problema na conformação, relacionado com as propriedades da pasta utilizada para a conformação, recorrendo-se a uma pasta de porcelana com propriedades diferentes. Neste trabalho é apresentado o problema em estudo, o material (a porcelana), incluindo as suas propriedades, as matérias-primas e os processos utilizados para produzir as peças estudadas. Apresentam-se os procedimentos usados para estudar o material e o problema, os resultados obtidos e as conclusões tiradas da discussão dos dados e observações. Adicionalmente, é apresentado trabalho relevante efetuado durante o estágio, em especial aquele relacionado com as chávenas de porcelana.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The system in-Ceram Alumina, produced by VITA, consists in a technique of prepare of a substructure of ceramics to dental crowns. First burning is made in the alumina decanted by slip casting process under a stone die that reproduces the tooth prepared to receive a crown. In a second burning, alumina is infiltrated by vitreous system, giving to this set a high mechanic resistance. In this work, it s made a study of the composition of a new infiltrating material more used nowadays, giving to alumina desirable mechanics proprieties to its using like substructure of support to ceramic s crown used in the market today. The addition of Lanthanum oxide (frit A) and calcium oxide (frit B) was made in attempt to increase the viscosity of LZSA and to reduce fusion temperature. The frits were put over samples of alumina and took to the tubular oven to 1400ºC under vacuum for two groups (groups 1 and 2). For another two groups (groups 3 and 4) it was made a second infiltration, following the same parameters of the first. A fifth group was utilized like group of control where the samples of pure alumina were not submitted to any infiltrating process. Glasses manifested efficient both in quality and results of analysis of mechanic resistance, being perfectly compatible with oral environment in this technical requisite. The groups that made a second infiltration had he best results of fracture toughness, qualify the use in the oral cavity in this technical question. The average of results achieved for mechanic resistance to groups 1, 2, 3, 4 and 5 were respectively 98 MPa, 90 MPa, 144 MPa, 236 MPa and 23 MPa

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work aims to contribute to a further understanding of the fundamentals of crystallographic slip and grain boundary sliding in the γ-TiAl Ti–45Al–2Nb–2Mn (at%)–0.8 vol%TiB2 intermetallic alloy, by means of in situ high-temperature tensile testing combined with electron backscatter diffraction (EBSD). Several microstructures, containing different fractions and sizes of lamellar colonies and equiaxed γ-grains, were fabricated by either centrifugal casting or powder metallurgy, followed by heat treatment at 1300 °C and furnace cooling. in situ tensile and tensile-creep experiments were performed in a scanning electron microscope (SEM) at temperatures ranging from 580 °C to 700 °C. EBSD was carried out in selected regions before and after straining. Our results suggest that, during constant strain rate tests, true twin γ/γ interfaces are the weakest barriers to dislocations and, thus, that the relevant length scale might be influenced by the distance between non-true twin boundaries. Under creep conditions both grain/colony boundary sliding (G/CBS) and crystallographic slip are observed to contribute to deformation. The incidence of boundary sliding is particularly high in γ grains of duplex microstructures. The slip activity during creep deformation in different microstructures was evaluated by trace analysis. Special emphasis was placed in distinguishing the compliance of different slip events with the Schmid law with respect to the applied stress.