885 resultados para Sister chromatid separation


Relevância:

80.00% 80.00%

Publicador:

Resumo:

DNA double-strand break (DSB) repair via the homologous recombination pathway is a multi-stage process, which results in repair of the DSB without loss of genetic information or fidelity. One essential step in this process is the generation of extended single-stranded DNA (ssDNA) regions at the break site. This ssDNA serves to induce cell cycle checkpoints and is required for Rad51 mediated strand invasion of the sister chromatid. Here, we show that human Exonuclease 1 (Exo1) is required for the normal repair of DSBs by HR. Cells depleted of Exo1 show chromosomal instability and hypersensitivity to ionising radiation (IR) exposure. We find that Exo1 accumulates rapidly at DSBs and is required for the recruitment of RPA and Rad51 to sites of DSBs, suggesting a role for Exo1 in ssDNA generation. Interestingly, the phosphorylation of Exo1 by ATM appears to regulate the activity of Exo1 following resection, allowing optimal Rad51 loading and the completion of HR repair. These data establish a role for Exo1 in resection of DSBs in human cells, highlighting the critical requirement of Exo1 for DSB repair via HR and thus the maintenance of genomic stability.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The BRC repeat is a structural motif in the tumor suppressor BRCA2 (breast cancer type 2 susceptibility protein), which promotes homologous recombination (HR) by regulating RAD51 recombinase activity. To date, the BRC repeat has not been observed in other proteins, so that its role in HR is inferred only in the context of BRCA2. Here, we identified a BRC repeat variant, named BRCv, in the RECQL5 helicase, which possesses anti-recombinase activity in vitro and suppresses HR and promotes cellular resistance to camptothecin-induced replication stress in vivo. RECQL5-BRCv interacted with RAD51 through two conserved motifs similar to those in the BRCA2-BRC repeat. Mutations of either motif compromised functions of RECQL5, including association with RAD51, inhibition of RAD51-mediated D-loop formation, suppression of sister chromatid exchange, and resistance to camptothecin-induced replication stress. Potential BRCvs were also found in other HR regulatory proteins, including Srs2 and Sgs1, which possess anti-recombinase activities similar to that of RECQL5. A point mutation in the predicted Srs2-BRCv disrupted the ability of the protein to bind RAD51 and to inhibit D-loop formation. Thus, BRC is a common RAD51 interaction module that can be utilized by different proteins to either promote HR, as in the case of BRCA2, or to suppress HR, as in RECQL5.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fifty-nine persons with industrial handling of low levels of acrylonitrile (AN) were studied. As part of a medical surveillance programme an extended haemoglobin adduct monitoring [N-(cyanoethyl)valine, CEV; N- (methyl)valine, MV; N-(hydroxyethyl)valine, HEV] was performed. Moreover, the genetic states of the polymorphic glutathione transferases GSTM1 and GSTT1 were assayed by polymerase chain reaction (PCR). Repetitive analyses of CEV and MV in subsequent years resulted in comparable values (means, 59.8 and 70.3 μg CEV/1 blood; 6.7 and 6.7 μg MV/1 blood). Hence, the industrial AN exposures were well below current official standards. Monitoring the haemoglobin adduct CEV appears as a suitable means of biomonitoring and medical surveillance under such exposure conditions. There was also no apparent correlation between the CEV and HEV or CEV and MV adduct levels. The MV and HEV values observed represented background levels, which apparently are not related to any occupational chemical exposure. There was no consistent effect of the genetic GSTM1 or GSTT1 state on CEV adduct levels induced by acrylonitrile exposure. Therefore, neither GSTM1 nor GSTT1 appears as a major AN metabolizing isoenzyme in humans. The low and physiological background levels of MV were also not influenced by the genetic GSTM1 state, but the MV adduct levels tended to be higher in GSTT1- individuals compared to GSTT1 + persons. With respect to the background levels of HEV adducts observed, there was no major influence of the GSTM1 state, but GST- individuals displayed adduct levels that were about 1/3 higher than those of GSTT1+ individuals. The coincidence with known differences in rates of background sister chromatid exchange between GSTT1- and GSTT1 + persons suggests that the lower ethylene oxide (EO) detoxification rate in GSTT1- persons, indicated by elevated blood protein hydroxyethyl adduct levels, leads to an increased genotoxic effect of the physiological EO background.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Also physical exercise in general is accepted to be protective, acute and strenuous exercise has been shown to induce oxidative stress. Enhanced formation of free radicals leads to oxidation of macromolecules and to DNA damage. On the other hand ultra-endurance events which require strenuous exercise are very popular and the number of participants is continuously increasing worldwide. Since only few data exists on Ironman triathletes, who are prototypes of ultra-endurance athletes, this study was aimed at assessing the risk of oxidative stress and DNA damage after finishing a triathlon and to predict a possible health risk. Blood samples of 42 male athletes were taken 2 days before, within 20 min after the race, 1, 5 and 19 days post-race. Oxidative stress marker increased only moderately after the race and returned to baseline after 5 days. Marker of DNA damage measured by the SCGE assay with and without restriction enzymes as well as by the sister chromatid exchange assay did either show no change or deceased within the first day after the race. Due to intake during the race and the release by the cells plasma concentrations of vitamin C and α-tocopherol increased after the event and returned to baseline 1 day after. This study indicates that despite a temporary increase in some oxidative stress markers, there is no persistent oxidative stress and no DNA damage in response to an Ironman triathlon in trained athletes, mainly due to an appropriate antioxidant intake and general protective alterations in the antioxidant defence system.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The fungicide Bavistin was assessed for mutagenic potential by various assays. Bavistin was found to be unable to induce gene mutation in Salmonella typhimurium, but it was able to induce transfection inhibition in Mycobacterium smegmatis. Bavistin was able to induce immediate genotoxic effects in plants but these were not carried through in development as in the long term no genotoxic effects were observed by the progeny test. Bavistin did induce micronuclei formation and did cause an increase in the ratio of normochromatic to polychromatic erythrocytes in mice. It was able to induce a very low frequency of sister-chromatid exchange in human lymphocytes and in addition, it was observed that the chemical affected the mitotic index but did not affect the cell cycle duration. Present studies indicate that the pesticide shows a positive response in 4 out of 5 different test systems (Table 8) and most of the observations support that Bavistin is genotoxic.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The aim of this study was to develop a short-term genotoxicity assay for monitoring the marine environment for mutagens. Based on the developing eggs and embryos of the marine mussel Mytilus edulis, an important pollution indicator species, the test employs the sensitive sister chromatid exchange (SCE) technique as its end-point, and exploits the potential of mussel eggs to accumulate mutagenic pollutants from the surrounding sea water. Mussel eggs take up to 6 months to develop while in the gonad, which provides scope for DNA damage to be accumulated over an extended time interval; chromosome damage is subsequently visualised as SCEs in 2-cell-stage embryos after these have been spawned in the laboratory. Methods which measure biological responses to pollutant exposure are able to integrate all the factors (internal and external) which contribute to the exposure. The new cytogenetic assay allows the effects of adult exposure to be interpreted in cells destined to become part of the next generation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Considerable controversy still exists as to whether electric and magnetic fields (MF) at extremely low frequencies are genotoxic to humans. The aim of this study was to test the ability of alternating magnetic fields to induce DNA and chromosomal damage in primary human fibroblasts. Single- and double-strand breaks were quantified using the alkaline comet assay and the gammaH2AX-foci assay, respectively. Chromosomal damage was assayed for unstable aberrations, sister chromatid exchange and micronuclei. Cells were exposed to switching fields - 5min on, 10min off - for 15h over the range 50-1000microT. Exposure to ionizing radiation was used as a positive-effect calibration. In this study two separate MF exposure systems were used. One was based on a custom-built solenoid coil system and the other on a commercial system almost identical to that used in previous studies by the EU REFLEX programme. With neither system could DNA damage or chromosomal damage be detected as a result of exposure of fibroblasts to switching MF. The sensitive gammaH2AX assay could also not detect significant DNA damage in the MF-exposed fibroblasts, although the minimum threshold for this assay was equivalent to an X-ray dose of 0.025Gy. Therefore, with comparable MF parameters employed, this study could not confirm previous studies reporting significant effects for both the alkaline and neutral comet assays and chromosomal aberration induction.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Classical radiation biology research has centred on nuclear DNA as the main target of radiation-induced damage. Over the past two decades, this has been challenged by a significant amount of scientific evidence clearly showing radiation-induced cell signalling effects to have important roles in mediating overall radiobiological response. These effects, generally termed radiation-induced bystander effects (RIBEs) have challenged the traditional DNA targeted theory in radiation biology and highlighted an important role for cells not directly traversed by radiation. The multiplicity of experimental systems and exposure conditions in which RIBEs have been observed has hindered precise definitions of these effects. However, RIBEs have recently been classified for different relevant human radiation exposure scenarios in an attempt to clarify their role in vivo. Despite significant research efforts in this area, there is little direct evidence for their role in clinically relevant exposure scenarios. In this review, we explore the clinical relevance of RIBEs from classical experimental approaches through to novel models that have been used to further determine their potential implications in the clinic. 

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Le benzo-a-pyrène (BaP) est un hydrocarbure aromatique polycyclique (HAP) cancérogène pour l’homme, qui contamine toutes les sphères de notre environnement. Son métabolite, le BaP-7,8-diol-9,10-époxyde (BPDE) est considéré comme son cancérogène ultime. Le BPDE se lie à l’ADN, formant des adduits qui doivent être réparés et qui seraient responsables des dommages à l’ADN et de la cancérogenèse induite par le BaP. Les adduits BPDE-ADN et les dommages à l’ADN (bris simple-brin [BSB] à l’ADN, aberrations chromosomiques [AC], échanges entre chromatides-sœurs [ÉCS] et micronoyaux [MN]) ont été mesurés dans les lymphocytes humains exposés à de faibles concentrations de BaP, provenant de jeunes volontaires non-fumeurs et en santé. Suite à l’exposition au BaP, le niveau d’adduits BPDE-ADN et la fréquence des AC et des MN augmentent significativement, puis diminuent aux concentrations les plus élevées de BaP testées, suggérant une induction du métabolisme de phase II du BaP. Lors de la mesure des ÉCS, nous obtenons une courbe dose-réponse linéaire, indiquant la production d’un autre type de lésions devant être réparées par le système de réparation par recombinaison homologue. Ces lésions pourraient être des bris à l’ADN ou des bases oxydées (8-OH-dG), ce qui est suggéré par l’analyse des corrélations existant entre nos biomarqueurs. Par ailleurs, la comparaison de la courbe dose-réponse des hommes et des femmes montre que des différences existent entre les sexes. Ainsi, les ÉCS, les AC et les MN sont significativement augmentés chez les hommes à la plus faible concentration de BaP, alors que chez les femmes cette augmentation, quoique présente, est non significative. Des différences interindividuelles sont également observées et sont plus importantes pour les adduits BPDE-ADN, les MN et les AC, alors que pour les ÉCS elles sont minimes. Les analyses statistiques effectuées ont permis d’établir que quatre facteurs (niveau d’exposition au BaP, adduits BPDE-ADN, fréquence des AC et nombre de MN par cellule micronucléée) expliquent jusqu’à 59 % de la variabilité observée dans le test des ÉCS, alors qu’aucun facteur significatif n’a pu être identifié dans le test des AC et des MN. L’analyse du mécanisme de formation de nos biomarqueurs précoces permet de suggérer que les bris à l’ADN et les bases oxydées devraient être classées comme biomarqueurs de dose biologique efficace, au sein des biomarqueurs d’exposition, dans le continuum exposition-maladie du BaP, étant donné qu’ils causent la formation des biomarqueurs de génotoxicité (ÉCS, AC et MN). Par ailleurs, le test des AC et des MN ont permis de confirmer l’action clastogénique du BaP en plus de mettre en évidence des effets aneugènes affectant surtout la ségrégation des chromosomes lors de la division cellulaire. Ces effets aneugènes, reliés à l’étape de progression dans la cancérogenèse, pourraient être particulièrement importants puisque l’exposition au BaP et aux HAP est chronique et dure plusieurs années, voire des décennies. La compréhension des mécanismes régissant la formation des biomarqueurs étudiés dans cette étude, ainsi que des relations existant entre eux, peut être appliquée à de nombreux contaminants connus et émergents de notre environnement et contribuer à en évaluer le mode d’action.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Recurrent submicroscopic genomic copy number changes are the result of nonallelic homologous recombination (NAHR). Nonrecurrent aberrations, however, can result from different nonexclusive recombination-repair mechanisms. We previously described small microduplications at Xq28 containing MECP2 in four male patients with a severe neurological phenotype. Here, we report on the fine-mapping and breakpoint analysis of 16 unique microduplications. The size of the overlapping copy number changes varies between 0.3 and 2.3 Mb, and FISH analysis on three patients demonstrated a tandem orientation. Although eight of the 32 breakpoint regions coincide with low-copy repeats, none of the duplications are the result of NAHR. Bioinformatics analysis of the breakpoint regions demonstrated a 2.5-fold higher frequency of Alu interspersed repeats as compared with control regions, as well as a very high GC content (53%). Unexpectedly, we obtained the junction in only one patient by long-range PCR, which revealed nonhomologous end joining as the mechanism. Breakpoint analysis in two other patients by inverse PCR and subsequent array comparative genomic hybridization analysis demonstrated the presence of a second duplicated region more telomeric at Xq28, of which one copy was inserted in between the duplicated MECP2 regions. These data suggest a two-step mechanism in which part of Xq28 is first inserted near the MECP2 locus, followed by breakage-induced replication with strand invasion of the normal sister chromatid. Our results indicate that the mechanism by which copy number changes occur in regions with a complex genomic architecture can yield complex rearrangements.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

JUSTIFICATIVA E OBJETIVOS: Neste estudo compararam-se médicos expostos aos gases anestésicos com indivíduos não expostos, para a investigação de alterações cromossômicas, verificação da possível interferência dos anestésicos inalatórios na cinética celular e avaliação do risco genotóxico associado à exposição ocupacional. MÉTODO: Foram realizadas culturas temporárias de linfócitos do sangue periférico para a obtenção de metáfases, necessárias para a análise de aberrações cromossômicas e trocas entre cromátides irmãs. RESULTADOS: A análise citogenética mostrou um aumento nas freqüências de aberrações cromossômicas por célula no grupo exposto, quando comparado ao grupo controle, denotando o efeito clastogênico desses compostos. Com relação ao parâmetro de trocas entre cromátides irmãs, os gases anestésicos não demonstraram efeito indutor. A comparação entre os índices mitótico e de proliferação celular também mostrou que não há diferenças significativas entre os grupos exposto e controle. CONCLUSÕES: Os resultados obtidos sugerem que os anestesiologistas podem representar um grupo de risco entre pessoas ocupacionalmente expostas e as condições de trabalho devem ser melhoradas.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cytotoxicity of metals is important because some metals are potential mutagens able to induce tumors in humans and experimental animals. Chromium can damage DNA in several ways, including DNA double strand breaks (DSBs) which generate chromosomal aberrations, micronucleus formation, sister chromatid exchange, formation of DNA adducts and alterations in DNA replication and transcription. In our study, water samples from three sites in the Córrego dos Bagres stream in the Franca municipality of the Brazilian state of São Paulo were subjected to the comet assay and micronucleus test using erythrocytes from the fish Oreochromis niloticus. Nuclear abnormalities of the erythrocytes included blebbed, notched and lobed nuclei, probably due to genotoxic chromium compounds. The greatest comet assay damage occurred with water from a chromium-containing tannery effluent discharge site, supporting the hypothesis that chromium residues can be genotoxic. The mutagenicity of the water samples was assessed using the onion root-tip cell assay, the most frequent chromosomal abnormalities observed being: c-metaphases, stick chromosome, chromosome breaks and losses, bridged anaphases, multipolar anaphases, and micronucleated and binucleated cells. Onion root-tip cell mutagenicity was highest for water samples containing the highest levels of chromium.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Venom of the honey bee Apis mellifera induced a protective effect against the induction of dicentric chromosomes by gamma radiation (2.0 Gy) in human peripheral blood lymphocytes which the cultures were treated with 0.00015 mul venom/1 ml medium 6 h before irradiation. In cultures to which the venom was added immediately before irradiation with 0.25, 1.0 and 2.0 Gy, no significant differences in number of dicentric chromosomes induced was observed when compared to cultures submitted to irradiation only. The venom did not induce clastogenic effects nor did it increase the frequency of sister chromatid exchanges.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

During the last years, the emission of heavy metals to the environment has increased, causing a severe negative impact to the ecosystems and seriously compromising human health due to their mutagenic potential. Tri- (III) and hexavalent (VI) chromium (Cr) constitute the oxidative states of the metal chromium that are active in living organisms. These two oxidation states of the chromium differ with regards to their cellular effects, mainly due to the different abilities they possess in relation to easy of transport through biological membranes. Cr VI is transported into the cell through transference channels of endogenous anions that are isostructural and isoelectronical to Cr VI, such as SO 4 -2 and HPO 4 -2. On the other hand, Cr III is unable to diffuse through the cell membrane. Its existence inside the cells is generally due to the reduction of Cr VI, the endocytosis, or the absortion by the cells via phagocytosis. Cr III acts directly on the DNA molecule, while Cr VI reacts little with this molecule. In the ecosystem, however, Cr VI is more dangerous since this is the form that presents greater reactivity with biological membranes, crossing them and being easily incorporated into the cell. In the cell it is biotransformed to Cr III, a potentially mutagenic molecule. In vivo and in vitro studies have shown that organisms exposed to Cr VI present greater induction to a variety of damages to the DNA molecule. Among the damages induced by Cr, changes in the structure of the DNA molecule have been reported, with breaks of the major chain and base oxidation. In the organisms, these alterations generate chromosomal aberrations, micronucleus formation, sister chromatid exchanges, and errors in DNA synthesis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The comet assay technique has been considered to be more efficient in the biomonitoring of aquatic environments that the micronucleus and sister chromatid exchange techniques. The comet assay has been used to determine breaks in the DNA strands of organisms exposed to pollutants with a genotoxic potential. The comet technique was applied to CHO-K1 cells in order to evaluate the genotoxic potential of the waters of the Sapucaizinho River (Municipality of Patrocínio Paulista, State of São Paulo, Brazil), which receive tannery effluents and therefore are contaminated with chromium. The results indicated high genotoxicity of the waters collected at sites located downstream from the emission of tannery effluents, where the concentration of chromium was found to be high.