986 resultados para Sistemas fuzzy Takagi-Sugeno


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a new multi-model technique of dentification in ANFIS for nonlinear systems. In this technique, the structure used is of the fuzzy Takagi-Sugeno of which the consequences are local linear models that represent the system of different points of operation and the precursors are membership functions whose adjustments are realized by the learning phase of the neuro-fuzzy ANFIS technique. The models that represent the system at different points of the operation can be found with linearization techniques like, for example, the Least Squares method that is robust against sounds and of simple application. The fuzzy system is responsible for informing the proportion of each model that should be utilized, using the membership functions. The membership functions can be adjusted by ANFIS with the use of neural network algorithms, like the back propagation error type, in such a way that the models found for each area are correctly interpolated and define an action of each model for possible entries into the system. In multi-models, the definition of action of models is known as metrics and, since this paper is based on ANFIS, it shall be denominated in ANFIS metrics. This way, ANFIS metrics is utilized to interpolate various models, composing a system to be identified. Differing from the traditional ANFIS, the created technique necessarily represents the system in various well defined regions by unaltered models whose pondered activation as per the membership functions. The selection of regions for the application of the Least Squares method is realized manually from the graphic analysis of the system behavior or from the physical characteristics of the plant. This selection serves as a base to initiate the linear model defining technique and generating the initial configuration of the membership functions. The experiments are conducted in a teaching tank, with multiple sections, designed and created to show the characteristics of the technique. The results from this tank illustrate the performance reached by the technique in task of identifying, utilizing configurations of ANFIS, comparing the developed technique with various models of simple metrics and comparing with the NNARX technique, also adapted to identification

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In some practical problems, for instance, in the suppression of vibration in mechanical systems, the state-derivative signals are easier to obtain than the state signals. Thus, a method for state-derivative feedback design applied to uncertain nonlinear systems is proposed in this work. The nonlinear systems are represented by Takagi-Sugeno fuzzy models during the modeling of the problem, allowing to use Linear Matrix Inequalities (LMIs) in the controller design. This type of modeling ease the control design, because, LMIs are easily solved using convex programming technicals. The control design aimed at system stabilisation, with or without bounds on decay rate. The efficiency of design procedure is illustrated through a numerical example.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a theorem based on the hyper-rectangle defined by the closed set of the time derivatives of the membership functions of Takagi-Sugeno fuzzy systems. This result is also based on Linear Matrix Inequalities and allows the reduction of the conservatism of the stability analysis in the sense of Lyapunov. The theorem generalizes previous results available in the literature. © 2013 Brazilian Society for Automatics - SBA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Elétrica - FEIS

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An efficient approach is presented to improve the local and global approximation and modelling capability of Takagi-Sugeno (T-S) fuzzy model. The main aim is obtaining high function approximation accuracy. The main problem is that T-S identification method cannot be applied when the membership functions are overlapped by pairs. This restricts the use of the T-S method because this type of membership function has been widely used during the last two decades in the stability, controller design and are popular in industrial control applications. The approach developed here can be considered as a generalized version of T-S method with optimized performance in approximating nonlinear functions. A simple approach with few computational effort, based on the well known parameters' weighting method is suggested for tuning T-S parameters to improve the choice of the performance index and minimize it. A global fuzzy controller (FC) based Linear Quadratic Regulator (LQR) is proposed in order to show the effectiveness of the estimation method developed here in control applications. Illustrative examples of an inverted pendulum and Van der Pol system are chosen to evaluate the robustness and remarkable performance of the proposed method and the high accuracy obtained in approximating nonlinear and unstable systems locally and globally in comparison with the original T-S model. Simulation results indicate the potential, simplicity and generality of the algorithm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tesis (Maestro en Ciencias de la Ingeniería con Especialidad en Control) - Universidad Autónoma de Nuevo León, 2001

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes new approaches to improve the local and global approximation (matching) and modeling capability of Takagi–Sugeno (T-S) fuzzy model. The main aim is obtaining high function approximation accuracy and fast convergence. The main problem encountered is that T-S identification method cannot be applied when the membership functions are overlapped by pairs. This restricts the application of the T-S method because this type of membership function has been widely used during the last 2 decades in the stability, controller design of fuzzy systems and is popular in industrial control applications. The approach developed here can be considered as a generalized version of T-S identification method with optimized performance in approximating nonlinear functions. We propose a noniterative method through weighting of parameters approach and an iterative algorithm by applying the extended Kalman filter, based on the same idea of parameters’ weighting. We show that the Kalman filter is an effective tool in the identification of T-S fuzzy model. A fuzzy controller based linear quadratic regulator is proposed in order to show the effectiveness of the estimation method developed here in control applications. An illustrative example of an inverted pendulum is chosen to evaluate the robustness and remarkable performance of the proposed method locally and globally in comparison with the original T-S model. Simulation results indicate the potential, simplicity, and generality of the algorithm. An illustrative example is chosen to evaluate the robustness. In this paper, we prove that these algorithms converge very fast, thereby making them very practical to use.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Este trabalho investiga uma estratégia de controle fuzzy Takagi-Sugeno aplicada ao controle de velocidade do motor de indução. A estratégia implementa uma interpolação ponderada entre um conjunto de controladores locais previamente projetados. Ao ocorrer variações nas condições operacionais do motor de indução, os ganhos da lei de controle são ajustados automaticamente, de modo a manter satisfatório o desempenho do sistema de controle. Para o projeto do controlador fuzzy a representação em espaço de estados da planta foi considerada sob a forma de um sistema aumentado, incluindo-se uma nova variável de estado que, nesse caso, foi selecionada como sendo a integral do erro de velocidade. Tal formulação permitiu o projeto de controladores locais com a estrutura PI, através de realimentação completa de estados, com posicionamento de pólos. Como variáveis de operação para o chaveamento fuzzy dos controladores locais, foram selecionados as variáveis velocidade angular do rotor e a componente da corrente de estator responsável pelo torque elétrico do motor. Em seguida, a estabilidade do controlador fuzzy Takagi- Sugeno projetado foi comprovada através do critério de Lyapunov, para isso o problema de estabilidade foi escrito na forma de LMIs. O desempenho do controlador fuzzy Takagi-Sugeno foi avaliado através de estudos de simulação, e seus resultados comparados ao desempenho de um controlador PI convencional, para a regulação da velocidade do rotor. Os resultados obtidos nas simulações mostram que o emprego da estratégia proposta torna o sistema mais robusto a variações paramétricas no sistema de acionamento.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work proposes to adjust the Notification Oriented Paradigm (NOP) so that it provides support to fuzzy concepts. NOP is inspired by elements of imperative and declarative paradigms, seeking to solve some of the drawbacks of both. By decomposing an application into a network of smaller computational entities that are executed only when necessary, NOP eliminates the need to perform unnecessary computations and helps to achieve better logical-causal uncoupling, facilitating code reuse and application distribution over multiple processors or machines. In addition, NOP allows to express the logical-causal knowledge at a high level of abstraction, through rules in IF-THEN format. Fuzzy systems, in turn, perform logical inferences on causal knowledge bases (IF-THEN rules) that can deal with problems involving uncertainty. Since PON uses IF-THEN rules in an alternative way, reducing redundant evaluations and providing better decoupling, this research has been carried out to identify, propose and evaluate the necessary changes to be made on NOP allowing to be used in the development of fuzzy systems. After that, two fully usable materializations were created: a C++ framework, and a complete programming language (LingPONFuzzy) that provide support to fuzzy inference systems. From there study cases have been created and several tests cases were conducted, in order to validate the proposed solution. The test results have shown a significant reduction in the number of rules evaluated in comparison to a fuzzy system developed using conventional tools (frameworks), which could represent an improvement in performance of the applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)