975 resultados para Sintering temperature


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The work reported here consisted of a study of the sensitivity of the nonlinear electrical properties of dense SnO2. CoO ceramic systems to low concentrations of La2O3, sintering temperature and cooling rates. The nonlinear electrical properties of these systems were found to increase with decreasing cooling rates, a behavior attributed to the CoO solid state reactions at temperatures below 1000 degreesC. Post-annealing treatment in N-2-rich atmospheres strongly decreases the non-ohmic behavior of SnO2. CoO ceramic systems. However, this behavior may be restored through thermal treatment in an O-2-rich atmosphere. (C) 2001 Elsevier B.V. Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The structural evolution during sintering of compacted SnO2 sol-gel powder was investigated using nitrogen adsorption isotherm analysis. Results show that for sintering temperatures up to 400°C the samples have a fractal pore size distribution. As the sintering temperature increases, a structural rearragement occurs, allowing an increase of the efficiency of particle packing and the reduction of fractality. Above 400°C, the pore size growth associated with grain coalescence is the main structural change observed as the sintering temperature increases. © 1995.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Additions of 0.5 to 2.0 mol% of CoO or MnO2 onto SnO, promote densification of this oxide up to 99% of theoretical density. The temperature of the maximum shrinkage rate (TM) and the relative density in the maximum densification rate (p*) during constant sintering heating rate depend on the dopant concentration. Thus, dopant concentration controls the densifying and nondensifying mechanisms during sintering. The densification of SnO2 witih addition of CoO or MnO, is explained in terms of the creation of oxygen vacancies.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Tin oxide is an n-type semiconductor material with a high covalent behavior. Mass transport in this oxide depends on the surface state promoted by atmosphere or by the solid solution of a non-isovalent oxide doping The sintering and grain growth of this type of oxide powder is then controlled by atmosphere and by extrinsic oxygen vacancy formation. For pure SnO2 powder the surface state depends only on the interaction of atmosphere molecules with the SnO2 surface. Inert atmosphere like argon or helium promotes oxygen vacancy formation at the surface due to reduction of SnO2 to SnO at the surface and liberation of oxygen molecules forming oxygen vacancies. As consequence surface diffusion is enhanced leading to grain coarsening but no densification. Oxygen atmosphere inhibits the SnO2 reduction decreasing the surface oxygen vacancy concentration. Addition of dopants with lower valence at sintering temperature creates extrinsic charged oxygen vacancies that promote mass transport at grain boundary leading to densification and grain growth of this polycrystalline oxide.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Tin oxide is an n type semiconductor material with a high covalent behavior. Mass transport in this oxide depends on the surface state promoted by atmosphere or by the solid solution of aliovalent oxide doping. The sintering and grain growth of this type of oxide powder is then controlled by atmosphere and by extrinsic oxygen vacancy formation. For pure SnO2 powder the surface state depends only on the interaction of atmosphere molecules with the SnO2 surface. Inert atmosphere like argon or helium promotes oxygen vacancy formation at the surface due to reduction of SnO2 to SnO at the surface and liberation of oxygen molecules forming oxygen vacancies. As a consequence surface diffusion is enhanced leading to grain coarsening but no densification. Oxygen atmosphere inhibits SnO2 reduction by decreasing the surface oxygen vacancy concentration. Addition of dopants with lower valence at the sintering temperature creates extrinsic charged oxygen vacancies that promote mass transport at the grain boundary leading to densification and grain growth of this polycrystalline oxide.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The main aim of this study was to develop dense and conducting SnO 2 ceramics without precipitated phases on the grain boundaries, which was verified using field emission scanning microscopy (FE-SEM) coupled with an energy-dispersive X-ray spectroscopy (FE-SEM/EDS). Two sample groups were investigated, where the first sample group was doped with zinc while the second one was doped with cobalt. The ceramics were prepared using the oxides mixture method and the sintering was carried out in a conventional muffle oven as well as in microwave oven. The results obtained were found to be similar regarding the relative density for the two sintering methods while time and temperature gains were observed for the microwave sintering method. The relative densities obtained were nearly 95%, for the two sintering methods. Concerning the electrical characterization measurements-electric field x current density as well as the environment temperature, the ceramics obtained through the conventional sintering method presented non-ohmic behavior. For the microwave sintered ceramics, we observed an ohmic behavior with electrical resistivity of 1.3 Ωcm for the samples doped with ZnO/Nb 2O 5 and 2.5 Ωcm for that of the samples doped with CoO/Nb 2O 5. The FE-SEM/EDS results for the microwave sintered ceramics indicated a structure with a reduced number of pores and other phases segregated at the grain boundaries, which leads to a better conductive ceramic than the conventional oven sintered samples. The dilatometry analysis determined the muffle sintering temperature and the difference between the densification of cobalt and zinc oxides. The addition of niobium oxide resulted in the decrease in resistivity, which thus led us to conclude that it is possible to obtain dense ceramics with low electrical resistivity based on SnO 2 using commercial oxides by the oxides mixture technique and the microwave oven sintering method. Copyright © 2011 American Scientific Publishers All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

La0.8Sr0.2Ga0.8Mg0.2O3-δ (LSGM), a promising electrolyte material for intermediate temperature solid oxide fuel cells, can be sintered to a fully dense state by a flash-sintering technique. In this work, LSGM is sintered by the current-limiting flash-sintering process at 690°C under an electric field of 100 V cm-1, in comparison with up to 1400°C or even higher temperature in conventional furnace sintering. The resultant LSGM samples are investigated by scanning electron microscopy, X-ray diffraction, and electrochemical impedance spectroscopy. The SEM images exhibit well-densified microstructures while XRD results show that the perovskite structure after flash-sintering does not changed. EIS results show that the conductivity of LSGM sintered by the current-limiting flash-sintering process increases with sintering current density value. The conductivity of samples sintered at 120 mA mm-2 reaches 0.049 σ cm-1 at 800°C, which is approximate to the value of conventional sintered LSGM samples at 1400°C. Additionally, the flash-sintering process is interpreted by Joule heating theory. Therefore, the current-limiting flash-sintering technique is proved to be an energy-efficient and eligible approach for the densification of LSGM and other materials requiring high sintering temperature.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

YBa2Cu3O7-x wires have been extruded with 2 and 5 wt.% of hydroxy propyl methylcellulose (HPMC) as binder. Both sets of wires sintered below 930°C have equiaxed grains while the wires sintered above this temperature have elongated grains. In the temperature range which gives equiaxed grains, the wires extruded with 5 wt.% HPMC have higher grain size and density. Cracks along the grain boundaries are often observed in the wires having elongated grains. Critical current density, Jc, increases initially, reaches a peak and then decreases with the sintering temperature. The sintering temperature giving a peak in Jc strongly depends on the heat treatment scheme for the wires extruded with 5 wt.% HPMC. TEM studies show that defective layers are formed along grain boundaries for the wires extruded with 5 wt.% HPMC after 5 h oxygenation. After 55 h oxygenation, the defective layers become more localised and grain boundaries adopt an overall cleaner appearance. Densification with equiaxed grains and clean grain boundaries produces the highest Jc's for polycrystalline YBa2Cu3O7 wires.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bismuth zinc niobium oxide (BZN) was successfully synthesized by a diol-based sol-gel reaction utilizing metal acetate and alkoxide precursors. Thermal analysis of a liquid suspension of precursors suggests that the majority of organic precursors decompose at temperatures up to 150°C, and organic free powders form above 350°C. The experimental results indicate that a homogeneous gel is obtained at about 200°C and then converts to a mixture of intermediate oxides at 350–400°C. Finally, single-phased BZN powders are obtained between 500 and 900°C. The degree of chemical homogeneity as determined by X-ray diffraction and EDS mapping is consistent throughout the samples. Elemental analysis indicates that the atomic ratio of metals closely matches a Bi1.5ZnNb1.5O7 composition. Crystallite sizes of the BZN powders calculated from the Scherrer equation are about 33–98 nm for the samples prepared at 500–700°C, respectively. The particle and crystallite sizes increase with increased sintering temperature. The estimated band gap of the BZN nanopowders from optical analysis is about 2.60–2.75 eV at 500-600°C. The observed phase formations and measured results in this study were compared with those of previous reports.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bi1.5ZnTa1.5O7 (BZT) has been synthesized using an alkoxide based sol-gel reaction route. The evolution of the phases produced from the alkoxide precursors and their properties have been characterized as function of temperature using a combination of thermogravimetric analysis (TGA) coupled with mass spectrometry (MS), infrared emission spectrometry (IES), X-ray diffraction (XRD), ultraviolet and visible (UV-Vis) spectroscopy, Raman spectroscopy, and N2 adsorption/desorption isotherms. The lowest sintering temperature (600∘C) to obtain phase pure BZT powders with high surface area (14.5m2/g) has been determined from the thermal decomposition and phase analyses.The photocatalytic activity of the BZT powders has been tested for the decolorization of organic azo-dye and found to be photoactive under UV irradiation.The electronic band structure of the BZT has been investigated using density functional theory (DFT) calculations to determine the band gap energy (3.12 eV) and to compare it with experimental band gap (3.02 eV at 800∘C) from optical absorptionmeasurements. An excellent match is obtained for an assumption of Zn cation substitutions at specifically ordered sites in the BZT structure.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

: Varistors prepared from ZnO with CaMnO3 perovskite as the only forming additive, exhibit voltage-limiting current-voltage characteristics with nonlinearity coefficient alpha up to 380 at low voltages of 1.8-12 V/mm. High nonlinearity is observed only with a suitable combination of processing parameters. The most crucial of them are (i) initial formulation of ceramics and (ii) the sintering temperature and conditions of post-sinter annealing. An electrically active intergranular phase is formed between ZnO grains with the composition ranging from Ca4Mn6Zn4O17 to Ca4Mn8Zn3O19, which creates the n-p-n heterojunctions. The low-voltage nonlinearity originates as a result of higher concentration of Mn(III)/Mn(IV) present at the grain boundary layer regions, being charge compensated by zinc vacancies. Under the external electric field, the barrier height is lowered due to the uphill diffusion of holes mediated by the acceptor states. Above the turn-on voltages, the unhindered transport of charge carriers between grains generates high current density associated with large nonlinearity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The perovskite structure in Pb(Zn1/3Nb2/3)O3 can be stabilized by the addition of Pb(Ni1/3Nb2/3)O3 and PbTiO3.Pb(Ni1/3Nb2/3)O3 assists in lowering the sintering temperature and shifting the Curie temperature of ceramics while PbTiO3 helps to optimize the dielectric properties. The phase stability and dielectric properties of several compositions in the Pb(Zn1/3Nb2/3)O3-Pb(Ni1/3Nb2/3)O3-PbTiO3 ternary relaxor ferroelectric system were investigated for possible capacitor applications. The effect of calcining and sintering temperature on the stability of perovskite phase in PZN rich compositions was studied extensively as a function of composition. The boundary line separating perovskite and mixed phases was determined for compositions near PZN. Several compositions can be sintered below 1050°C. The dielectric properties of compositions near the mixed phase boundary showed strong dependence on the percentage of pyrochlore phase. Compositions with a dielectric constant of 12.500 at room temperature have been identified which meet Z5T and Y5U specifications for dielectric constant and tan δ.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Partially grain-oriented (48%) ceramics of strontium bismuth tantalate (SrBi2Ta2O9) have been fabricated via conventional sintering. The grain-orientation factor of the ceramics was determined, as a function of both the sintering temperature and duration of sintering using X-ray powder diffraction (XRD) techniques. Variations in microstructural features (from acircular to plate like morphology) as a function of sintering temperature of the pellets were monitored by Scanning Electron Microscopy (SEM). The dielectric constant and loss measurements as functions of both frequency and temperature have been carried out along the directions parallel and perpendicular to the pressing axis. The anisotropy (epsilon(rn)/epsilon(rp)) associated was found to be 2.21. The effective dielectric constant of the samples with varying porosity was predicted using different dielectric mixture formulae. The grain boundary and grain interior contributions to the dielectric properties were rationalized using the impedance spectroscopy. The pyroelectric coefficient for strontium bismuth tantalate ceramic was determined along the parallel and perpendicular directions to the pressing axis and found to be -23 muC/m(2)K and -71 muC/m(2)K, respectively at 300 K. The ferroelectric properties of these partially grain-oriented ceramics are superior in the direction perpendicular to the pressing axis to that in the parallel direction.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The influence of powder processing and sintering temperature on densification, microstructure and mechanical properties of hydroxyapatite (HAp) ceramics was studied. The as-dried, calcined and processed HAp powders were uniaxially compacted and sintered at various temperatures (1000-1400 degreesC) for 3 h. The as-dried and processed powders, attained 97% of theoretical density (TD) at 1100 degreesC) at higher sintering temperatures, the density of the as-dried powder compact was found to decrease. A uniform microstructure with fine grain size (2.3 pm) was observed for material obtained from processed powder, whereas exaggerated grain growth with closed pores were observed in as-dried and unprocessed powder compacts. The Vickers' hardness, fracture toughness and flexural strength of HAp were determined and a maximum value of 6.3 GPa and 0.88 MPam(1/2) and 60.3 MPa, respectively were obtained for processed compact. The processing of HAp has improved its densification, microstructure homogeneity and mechanical properties. (C) 2002 Elsevier Science Ltd and Techna S.r.l. All rights reserved.