961 resultados para Single cylinder motor


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Presented is a study that expands the body of knowledge on the effect of in-cycle speed fluctuations on performance of small engines. It uses the methods developed previously by Callahan, et al. (1) to examine a variety of two-stroke engines and one four-stroke engine. The two-stroke engines were: a high performance single-cylinder, a low performance single-cylinder, a high performance multi-cylinder, and a medium performance multi-cylinder. The four-stroke engine was a high performance single-cylinder unit. Each engine was modeled in Virtual Engines, which is a fully detailed one-dimensional thermodynamic engine simulator. Measured or predicted in-cycle speed data were input into the engine models. Predicted performance changes due to drivetrain effects are shown in each case, and conclusions are drawn from those results. The simulations for the high performance single-cylinder two-stroke engine predicted significant in-cycle crankshaft speed fluctuation amplitudes and significant changes in performance when the fluctuations were input into the engine model. This was validated experimentally on a firing test engine based on a Yamaha YZ250. The four-stroke engine showed significant changes in predicted performance compared to the prediction with zero speed fluctuation assumed in the model. Measured speed fluctuations from a firing Yamaha YZ400F engine were applied to the simulation in addition to data from a simple free mass model. Both methods predicted similar fluctuation profiles and changes in performance. It is shown that the gear reduction between the crankshaft and clutch allowed for this similar behavior. The multi-cylinder, high performance two-stroke engine also showed significant changes in performance, in this case depending on the firing configuration. The low output two-stroke engine simulation showed only a negligible change in performance in spite of high amplitude speed fluctuations. This was due to its flat torque versus speed characteristic. The medium performance multi-cylinder two-stroke engine also showed only a negligible change in performance, in this case due to a relatively high inertia rotating assembly and multiple cylinder firing events within the revolution. These smoothed the net torque pulsations and reduced the amplitude of the speed fluctuation itself.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The unsteady gas dynamic phenomena in engine intake systems of the type found in racecars have been examined. In particular, the resonant tuning effects, including cylinder-to-cylinder power variations, which can occur as a result of the interaction between an engine and its airbox have been considered. Frequency analysis of the output from a Virtual 4-Stroke 1D engine simulation was used to characterise the forcing function applied by an engine to an airbox. A separate computational frequency sweeping technique, which employed the CFD package FLUENT, was used to determine the natural frequencies of virtual airboxes in isolation from an engine. Using this technique, an airbox with a natural frequency at 75 Hz was designed for a Yamaha R6 4-cylinder motorcycle engine. The existence of an airbox natural frequency at 75 Hz was subsequently confirmed by an experimental frequency sweeping technique carried out on the engine test bed. A coupled 1D/3D analysis which employed the engine simulation package Virtual 4-Stroke and the CFD package FLUENT, was used to model the combined engine and airbox system. The coupled 1D/3D analysis predicted a 75 Hz resonance of the airbox at an engine speed of 9000 rpm. This frequency was the induction frequency for a single cylinder. An airbox was fabricated and tested on the engine. Static pressure was recorded at a grid of points in the airbox as the engine was swept through a speed range of 3000 to 10000 rpm. The measured engine speed corresponding to resonance in the airbox agreed well with the predicted values. There was also good correlation between the amplitude and phase of the pressure traces recorded within the airbox and the 1D/3D predictions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The unsteady gas dynamic phenomena in a racecar airbox have been examined, and resonant tuning effects have been considered. A coupled 1D/3D analysis, using the engine simulation package Virtual 4-Stroke and the CFD package FLUENT, was used to model the engine and airbox. The models were experimentally validated. An airbox was designed with a natural frequency in the region of 75 Hz. A coupled 1D/3D analysis of the airbox and a Yamaha R6 4 cylinder engine predicted resonance at the single-cylinder induction frequency; 75 Hz at an engine speed of 9000 rpm.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Modern medical imaging techniques enable the acquisition of in vivo high resolution images of the vascular system. Most common methods for the detection of vessels in these images, such as multiscale Hessian-based operators and matched filters, rely on the assumption that at each voxel there is a single cylinder. Such an assumption is clearly violated at the multitude of branching points that are easily observed in all, but the Most focused vascular image studies. In this paper, we propose a novel method for detecting vessels in medical images that relaxes this single cylinder assumption. We directly exploit local neighborhood intensities and extract characteristics of the local intensity profile (in a spherical polar coordinate system) which we term as the polar neighborhood intensity profile. We present a new method to capture the common properties shared by polar neighborhood intensity profiles for all the types of vascular points belonging to the vascular system. The new method enables us to detect vessels even near complex extreme points, including branching points. Our method demonstrates improved performance over standard methods on both 2D synthetic images and 3D animal and clinical vascular images, particularly close to vessel branching regions. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper is based on the analysis and implementation of a new drive system applied to refrigeration systems, complying with the restrictions imposed by the IEC standards (Harmonic/Flicker/EMI-Electromagnetic Interference restrictions), in order to obtain high efficiency, high power factor, reduced harmonic distortion in the input current and reduced electromagnetic interference, with excellent performance in temperature control of a refrigeration prototype system (automatic control, precision and high dynamic response). The proposal is replace the single-phase motor by a three-phase motor, in the conventional refrigeration system. In this way, a proper control technique can be applied, using a closed-loop (feedback control), that will allow an accurate adjustment of the desirable temperature. The proposed refrigeration prototype uses a 0.5Hp three-phase motor and an open (Belt-Drive) Bitzer IY type compressor. The input rectifier stage's features include the reduction in the input current ripple, the reduction in the output voltage ripple, the use of low stress devices, low volume for the EMI input filter, high input power factor (PF), and low total harmonic distortion (THD) in the input current, in compliance with the IEC61000-3-2 standards. The digital controller for the output three-phase inverter stage has been developed using a conventional voltage-frequency control (scalar V/f control), and a simplified stator oriented Vector control, in order to verify the feasibility and performance of the proposed digital controls for continuous temperature control applied at the refrigerator prototype. ©2008 IEEE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This is the first part of a study investigating a model-based transient calibration process for diesel engines. The motivation is to populate hundreds of parameters (which can be calibrated) in a methodical and optimum manner by using model-based optimization in conjunction with the manual process so that, relative to the manual process used by itself, a significant improvement in transient emissions and fuel consumption and a sizable reduction in calibration time and test cell requirements is achieved. Empirical transient modelling and optimization has been addressed in the second part of this work, while the required data for model training and generalization are the focus of the current work. Transient and steady-state data from a turbocharged multicylinder diesel engine have been examined from a model training perspective. A single-cylinder engine with external air-handling has been used to expand the steady-state data to encompass transient parameter space. Based on comparative model performance and differences in the non-parametric space, primarily driven by a high engine difference between exhaust and intake manifold pressures (ΔP) during transients, it has been recommended that transient emission models should be trained with transient training data. It has been shown that electronic control module (ECM) estimates of transient charge flow and the exhaust gas recirculation (EGR) fraction cannot be accurate at the high engine ΔP frequently encountered during transient operation, and that such estimates do not account for cylinder-to-cylinder variation. The effects of high engine ΔP must therefore be incorporated empirically by using transient data generated from a spectrum of transient calibrations. Specific recommendations on how to choose such calibrations, how many data to acquire, and how to specify transient segments for data acquisition have been made. Methods to process transient data to account for transport delays and sensor lags have been developed. The processed data have then been visualized using statistical means to understand transient emission formation. Two modes of transient opacity formation have been observed and described. The first mode is driven by high engine ΔP and low fresh air flowrates, while the second mode is driven by high engine ΔP and high EGR flowrates. The EGR fraction is inaccurately estimated at both modes, while EGR distribution has been shown to be present but unaccounted for by the ECM. The two modes and associated phenomena are essential to understanding why transient emission models are calibration dependent and furthermore how to choose training data that will result in good model generalization.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Experimental work and analysis was done to investigate engine startup robustness and emissions of a flex-fuel spark ignition (SI) direct injection (DI) engine. The vaporization and other characteristics of ethanol fuel blends present a challenge at engine startup. Strategies to reduce the enrichment requirements for the first engine startup cycle and emissions for the second and third fired cycle at 25°C ± 1°C engine and intake air temperature were investigated. Research work was conducted on a single cylinder SIDI engine with gasoline and E85 fuels, to study the effect on first fired cycle of engine startup. Piston configurations that included a compression ratio change (11 vs 15.5) and piston geometry change (flattop vs bowl) were tested, along with changes in intake cam timing (95,110,125) and fuel pressure (0.4 MPa vs 3 MPa). The goal was to replicate the engine speed, manifold pressure, fuel pressure and testing temperature from an engine startup trace for investigating the first fired cycle for the engine. Results showed bowl piston was able to enable lower equivalence ratio engine starts with gasoline fuel, while also showing lower IMEP at the same equivalence ratio compared to flat top piston. With E85, bowl piston showed reduced IMEP as compression ratio increased at the same equivalence ratio. A preference for constant intake valve timing across fuels seemed to indicate that flattop piston might be a good flex-fuel piston. Significant improvements were seen with higher CR bowl piston with high fuel pressure starts, but showed no improvement with low fuel pressures. Simulation work was conducted to analyze initial three cycles of engine startup in GT-POWER for the same set of hardware used in the experimentations. A steady state validated model was modified for startup conditions. The results of which allowed an understanding of the relative residual levels and IMEP at the test points in the cam phasing space. This allowed selecting additional test points that enable use of higher residual levels, eliminating those with smaller trapped mass incapable of producing required IMEP for proper engine turnover. The second phase of experimental testing results for 2nd and 3rd startup cycle revealed both E10 and E85 prefer the same SOI of 240°bTDC at second and third startup cycle for the flat top piston and high injection pressures. E85 fuel optimal cam timing for startup showed that it tolerates more residuals compared to E10 fuel. Higher internal residuals drives down the Ø requirement for both fuels up to their combustion stability limit, this is thought to be direct benefit to vaporization due to increased cycle start temperature. Benefits are shown for an advance IMOP and retarded EMOP strategy at engine startup. Overall the amount of residuals preferred by an engine for E10 fuel at startup is thought to be constant across engine speed, thus could enable easier selection of optimized cam positions across the startup speeds.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The aim of this project was to carry out an investigastion into suitable alternatives to gasoline for use in modern automobiles. The fuel would provide the western world with a means of extending the natural gasoline resources and the third world a way of cutting down their dependence on the oil producing countries for their energy supply. Alcohols, namely methanol and ethanol, provide this solution. They can be used as gasoline extenders or as fuels on their own.In order to fulfil the aims of the project a literature study was carried out to investigate methods and costs of producing these fuels. An experimental programme was then set up in which the performance of the alcohols was studied on a conventional engine. The engine used for this purpose was the Fiat 127 930cc four cylinder engine. This engine was used because of its popularity in the European countries. The Weber fixed jet carburettor, since it was designed to be used with gasoline, was adapted so that the alcohol fuels and the blends could be used in the most efficient way. This was mainly to take account of the lower heat content of the alcohols. The adaptation of the carburettor was in the form of enlarging the main metering jet. Allowances for the alcohol's lower specfic gravity were made during fuel metering.Owing to the low front end volatility of methanol and ethanol, it was expected that `start up' problems would occur. An experimental programme was set up to determine the temperature range for a minimum required percentage `take off' that would ease start-up since it was determined that a `take off' of about 5% v/v liquid in the vapour phase would be sufficient for starting. Additions such as iso-pentane and n-pentane were used to improve the front end volatility. This proved to be successful.The lower heat content of the alcohol fuels also meant that a greater charge of fuel would be required. This was seen to pose further problems with fuel distribution from the carburettor to the individual cylinders on a multicylinder engine. Since it was not possible to modify the existing manifold on the Fiat 127 engine, experimental tests on manifold geometry were carried out using the Ricardo E6 single cylinder variable compression engine. Results from these tests showed that the length, shape and cross-sectional area of the manifold play an important part in the distribution of the fuel entering the cylinder, ie. vapour phase, vapour/small liquid droplet/liquid film phase, vapour/large liquid droplet/liquid film phase etc.The solvent properties of the alcohols and their greater electrical conductivity suggested that the materials used on the engine would be prone to chemical attack. In order to determine the type and rate of chemical attack, an experimental programme was set up whereby carburettor and other components were immersed in the alcohols and in blends of alcohol with gasoline. The test fuels were aerated and in some instances kept at temperatures ranging from 50oC to 90oC. Results from these tests suggest that not all materials used in the conventional engine are equally suitable for use with alcohols and alcohol/gasoline blends. Aluminium for instance was severely attacked by methanol causing pitting and pin-holing in the surface.In general this whole experimental programme gave valuable information on the acceptability of substitute fuels. While the long term effects of alcohol use merit further study, it is clear that methanol and ethanol will be increasingly used in place of gasoline.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

© IMechE 2014. Controlled auto-ignition, also known as homogeneous charge compression ignition, has been the subject of extensive research because of their ability to provide simultaneous reductions in fuel consumption and NOx emissions from a gasoline engine. However, due to its limited operation range, switching between controlled auto-ignition and spark ignition combustion is needed to cover the complete operating range of a gasoline engine for passenger car applications. Previous research has shown that the spark ignition -controlled auto-ignition hybrid combustion (SCHC) has the potential to control the ignition timing and heat release process during the mode transition operations. However, it was found that the SCHC is often characterized with large cycle-to-cycle variations. The cyclic variations in the in-cylinder pressure are particularly noticeable in terms of both their peak values and timings while the coefficient of variation in the indicated mean effective pressure is much less. In this work, the cyclic variations in SCHC operations were analyzed by means of in-cylinder pressure and heat release analysis in a single-cylinder gasoline engine equipped with Variable Valve Actuation (VVA) systems. First, characteristics of the in-cylinder pressure traces during the spark ignition-controlled auto-ignition hybrid combustion operation are presented and their heat release processes analyzed. In order to clarify the contribution to heat release and cyclic variation in SCHC, a new method is introduced to identify the occurrence of auto-ignition combustion and its subsequent heat release process. Based on the new method developed, the characteristics of cyclic variations in the maximum rate of pressure rise and different stages of heat release process have been analyzed and discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Homogeneous Charge Compression Ignition (HCCI) engine is a promising combustion concept for reducing NOx and particulate matter (PM) emissions and providing a high thermal efficiency in internal combustion engines. This concept though has limitations in the areas of combustion control and achieving stable combustion at high loads. For HCCI to be a viable option for on-road vehicles, further understanding of its combustion phenomenon and its control are essential. Thus, this thesis has a focus on both the experimental setup of an HCCI engine at Michigan Technological University (MTU) and also developing a physical numerical simulation model called the Sequential Model for Residual Affected HCCI (SMRH) to investigate performance of HCCI engines. The primary focus is on understanding the effects of intake and exhaust valve timings on HCCI combustion. For the experimental studies, this thesis provided the contributions for development of HCCI setup at MTU. In particular, this thesis made contributions in the areas of measurement of valve profiles, measurement of piston to valve contact clearance for procuring new pistons for further studies of high geometric compression ratio HCCI engines. It also consists of developing and testing a supercharging station and the setup of an electrical air heater to extend the HCCI operating region. The HCCI engine setup is based on a GM 2.0 L LHU Gen 1 engine which is a direct injected engine with variable valve timing (VVT) capabilities. For the simulation studies, a computationally efficient modeling platform has been developed and validated against experimental data from a single cylinder HCCI engine. In-cylinder pressure trace, combustion phasing (CA10, CA50, BD) and performance metrics IMEP, thermal efficiency, and CO emission are found to be in good agreement with experimental data for different operating conditions. Effects of phasing intake and exhaust valves are analyzed using SMRH. In addition, a novel index called Fuel Efficiency and Emissions (FEE) index is defined and is used to determine the optimal valve timings for engine operation through the use of FEE contour maps.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Several brain imaging studies have assumed that response conflict is present in Stroop tasks. However, this has not been demonstrated directly. We examined the time-course of stimulus and response conflict resolution in a numerical Stroop task by combining single-trial electro-myography (EMG) and event-related brain potentials (ERP). EMG enabled the direct tracking of response conflict and the peak latency of the P300 ERP wave was used to index stimulus conflict. In correctly responded trials of the incongruent condition EMG detected robust incorrect response hand activation which appeared consistently in single trials. In 50–80% of the trials correct and incorrect response hand activation coincided temporally, while in 20–50% of the trials incorrect hand activation preceded correct hand activation. EMG data provides robust direct evidence for response conflict. However, congruency effects also appeared in the peak latency of the P300 wave which suggests that stimulus conflict also played a role in the Stroop paradigm. Findings are explained by the continuous flow model of information processing: Partially processed task-irrelevant stimulus information can result in stimulus conflict and can prepare incorrect response activity. A robust congruency effect appeared in the amplitude of incongruent vs. congruent ERPs between 330–400 ms, this effect may be related to the activity of the anterior cingulate cortex.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Increased use of powered two-wheelers (PTWs) often underlies increases in the number of reported crashes, promoting research into PTW safety. PTW riders are overrepresented in crash and injury statistics relative to exposure and, as such, are considered vulnerable road users. PTW use has increased substantially over the last decade in many developed countries. One such country is Australia, where moped and scooter use has increased at a faster rate than motorcycle use in recent years. Increased moped use is particularly evident in the State of Queensland which is one of four Australian jurisdictions where moped riding is permitted for car licence holders and a motorcycle licence is not required. A moped is commonly a small motor scooter and is limited to a maximum design speed of 50 km/h and a maximum engine cylinder capacity of 50 cubic centimetres. Scooters exceeding either of these specifications are classed as motorcycles in all Australian jurisdictions. While an extensive body of knowledge exists on motorcycle safety, some of which is relevant to moped and scooter safety, the latter PTW types have received comparatively little focused research attention. Much of the research on moped safety to date has been conducted in Europe where they have been popular since the mid 20th century, while some studies have also been conducted in the United States. This research is of limited relevance to Australia due to socio-cultural, economic, regulatory and environmental differences. Moreover, while some studies have compared motorcycles to mopeds in terms of safety, no research to date has specifically examined the differences and similarities between mopeds and larger scooters, or between larger scooters and motorcycles. To address the need for a better understanding of moped and scooter use and safety, the current program of research involved three complementary studies designed to achieve the following aims: (1) develop better knowledge and understanding of moped and scooter usage trends and patterns; and (2) determine the factors leading to differences in moped, scooter and motorcycle safety. Study 1 involved six-monthly observations of PTW types in inner city parking areas of Queensland’s capital city, Brisbane, to monitor and quantify the types of PTW in use over a two year period. Study 2 involved an analysis of Queensland PTW crash and registration data, primarily comparing the police-reported crash involvement of mopeds, scooters and motorcycles over a five year period (N = 7,347). Study 3 employed both qualitative and quantitative methods to examine moped and scooter usage in two components: (a) four focus group discussions with Brisbane-based Queensland moped and scooter riders (N = 23); and (b) a state-wide survey of Queensland moped and scooter riders (N = 192). Study 1 found that of the PTW types parked in inner city Brisbane over the study period (N = 2,642), more than one third (36.1%) were mopeds or larger scooters. The number of PTWs observed increased at each six-monthly phase, but there were no significant changes in the proportions of PTW types observed across study phases. There were no significant differences in the proportions or numbers of PTW type observed by season. Study 2 revealed some important differences between mopeds, scooters and motorcycles in terms of safety and usage through analysis of crash and registration data. All Queensland PTW registrations doubled between 2001 and 2009, but there was an almost fifteen-fold increase in moped registrations. Mopeds subsequently increased as a proportion of Queensland registered PTWs from 1.2 percent to 8.8 percent over this nine year period. Moped and scooter crashes increased at a faster rate than motorcycle crashes over the five year study period from July 2003 to June 2008, reflecting their relatively greater increased usage. Crash rates per 10,000 registrations for the study period were only slightly higher for mopeds (133.4) than for motorcycles and scooters combined (124.8), but estimated crash rates per million vehicle kilometres travelled were higher for mopeds (6.3) than motorcycles and scooters (1.7). While the number of crashes increased for each PTW type over the study period, the rate of crashes per 10,000 registrations declined by 40 percent for mopeds compared with 22 percent for motorcycles and scooters combined. Moped and scooter crashes were generally less severe than motorcycle crashes and this was related to the particular crash characteristics of the PTW types rather than to the PTW types themselves. Compared to motorcycle and moped crashes, scooter crashes were less likely to be single vehicle crashes, to involve a speeding or impaired rider, to involve poor road conditions, or to be attributed to rider error. Scooter and moped crashes were more likely than motorcycle crashes to occur on weekdays, in lower speed zones and at intersections. Scooter riders were older on average (39) than moped (32) and motorcycle (35) riders, while moped riders were more likely to be female (36%) than scooter (22%) or motorcycle riders (7%). The licence characteristics of scooter and motorcycle riders were similar, with moped riders more likely to be licensed outside of Queensland and less likely to hold a full or open licence. The PTW type could not be identified in 15 percent of all cases, indicating a need for more complete recording of vehicle details in the registration data. The focus groups in Study 3a and the survey in Study 3b suggested that moped and scooter riders are a heterogeneous population in terms of demographic characteristics, riding experience, and knowledge and attitudes regarding safety and risk. The self-reported crash involvement of Study 3b respondents suggests that most moped and scooter crashes result in no injury or minor injury and are not reported to police. Study 3 provided some explanation for differences observed in Study 2 between mopeds and scooters in terms of crash involvement. On the whole, scooter riders were older, more experienced, more likely to have undertaken rider training and to value rider training programs. Scooter riders were also more likely to use protective clothing and to seek out safety-related information. This research has some important practical implications regarding moped and scooter use and safety. While mopeds and scooters are generally similar in terms of usage, and their usage has increased, scooter riders appear to be safer than moped riders due to some combination of superior skills and safer riding behaviour. It is reasonable to expect that mopeds and scooters will remain popular in Queensland in future and that their usage may further increase, along with that of motorcycles. Future policy and planning should consider potential options for encouraging moped riders to acquire better riding skills and greater safety awareness. While rider training and licensing appears an obvious potential countermeasure, the effectiveness of rider training has not been established and other options should also be strongly considered. Such options might include rider education and safety promotion, while interventions could also target other road users and urban infrastructure. Future research is warranted in regard to moped and scooter safety, particularly where the use of those PTWs has increased substantially from low levels. Research could address areas such as rider training and licensing (including program evaluations), the need for more detailed and reliable data (particularly crash and exposure data), protective clothing use, risks associated with lane splitting and filtering, and tourist use of mopeds. Some of this research would likely be relevant to motorcycle use and safety, as well as that of mopeds and scooters.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Crashes at any particular transport network location consist of a chain of events arising from a multitude of potential causes and/or contributing factors whose nature is likely to reflect geometric characteristics of the road, spatial effects of the surrounding environment, and human behavioural factors. It is postulated that these potential contributing factors do not arise from the same underlying risk process, and thus should be explicitly modelled and understood. The state of the practice in road safety network management applies a safety performance function that represents a single risk process to explain crash variability across network sites. This study aims to elucidate the importance of differentiating among various underlying risk processes contributing to the observed crash count at any particular network location. To demonstrate the principle of this theoretical and corresponding methodological approach, the study explores engineering (e.g. segment length, speed limit) and unobserved spatial factors (e.g. climatic factors, presence of schools) as two explicit sources of crash contributing factors. A Bayesian Latent Class (BLC) analysis is used to explore these two sources and to incorporate prior information about their contribution to crash occurrence. The methodology is applied to the state controlled roads in Queensland, Australia and the results are compared with the traditional Negative Binomial (NB) model. A comparison of goodness of fit measures indicates that the model with a double risk process outperforms the single risk process NB model, and thus indicating the need for further research to capture all the three crash generation processes into the SPFs.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Syntheses of protein molecules in a cell are carried out by ribosomes.A ribosome can be regarded as a molecular motor which utilizes the input chemical energy to move on a messenger RNA (mRNA) track that also serves as a template for the polymerization of the corresponding protein. The forward movement, however, is characterized by an alternating sequence of translocation and pause. Using a quantitative model, which captures the mechanochemical cycle of an individual ribosome, we derive an exact analytical expression for the distribution of its dwell times at the successive positions on the mRNA track. Inverse of the average dwell time satisfies a Michaelis-Menten-type'' equation and is consistent with the general formula for the average velocity of a molecular motor with an unbranched mechanochemical cycle. Extending this formula appropriately, we also derive the exact force-velocity relation for a ribosome. Often many ribosomes each synthesizes a copy of the same protein. We extend the model of a single ribosome by incorporating steric exclusion of different individuals on the same track. We draw the phase diagram of this model of ribosome traffic in three-dimensional spaces spanned by experimentally controllable parameters. We suggest new experimental tests of our theoretical predictions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the present paper, a novel topology for generating a 17-level inverter using three-level flying capacitor inverter and cascaded H-bridge modules with floating capacitors. The proposed circuit is analyzed and various aspects of it are presented in the paper. This circuit is experimentally verified and the results are shown. The stability of the capacitor balancing algorithm has been verified during sudden acceleration. This circuit has many pole voltage redundancies. This circuit has an advantage of balancing all the capacitor voltages instantaneously by switching through the redundancies. Another advantage of this topology is its ability to generate all the 17 pole voltages from a single DC link which enables back to back converter operation. Also, the proposed inverter can be operated at all load power factors and modulation indices. Another advantage is, if one of the H-bridges fail, the inverter can still be operated at full load with reduced number of levels.