954 resultados para Single Crossing Property Marginal Rate of Substitution IdentityDiscrete Pooling.
Resumo:
The ejected mass distribution of Type Ia supernovae (SNe Ia) directly probes progenitor evolutionary history and explosion mechanisms, with implications for their use as cosmological probes. Although the Chandrasekhar mass is a natural mass scale for the explosion of white dwarfs as SNe Ia, models allowing SNe Ia to explode at other masses have attracted much recent attention. Using an empirical relation between the ejected mass and the light-curve width, we derive ejected masses Mej and 56Ni masses MNi for a sample of 337 SNe Ia with redshifts z <0.7 used in recent cosmological analyses. We use hierarchical Bayesian inference to reconstruct the joint Mej-MNi distribution, accounting for measurement errors. The inferred marginal distribution of Mej has a long tail towards sub-Chandrasekhar masses, but cuts off sharply above 1.4 M⊙. Our results imply that 25-50 per cent of normal SNe Ia are inconsistent with Chandrasekhar-mass explosions, with almost all of these being sub-Chandrasekhar mass; super-Chandrasekhar-mass explosions make up no more than 1 per cent of all spectroscopically normal SNe Ia. We interpret the SN Ia width-luminosity relation as an underlying relation between Mej and MNi, and show that the inferred relation is not naturally explained by the predictions of any single known explosion mechanism.
Resumo:
Purpose: The aim of this study was to evaluate the success rate of maxillary immediate nonfunctional single-tooth loaded implants used into fresh extraction sites (immediate placement condition) or healed ridge (delayed placement condition).Materials and Methods: Eighty-two dental implants were placed in the maxilla of 64 consecutive patients from Private practice office and from a specialization course in Implantology. Forty-six implants were inserted under immediate placement condition, and 36 were inserted under delayed placement condition. The criteria used to evaluate success rate were those previously described by Albrektsson and Zarb (Int J Prosthodont 1993;6: 95-105), and follow-up period ranged from 18.0 to 39.7 months.Results: Seventy-nine implants fulfilled the success rate criteria (96.3%). Moreover, differences concerning implantation condition were not significant (P = 0.33, Qui-square test): three of the failed implants were from immediate placement group (success rate of 93.5%), and none was from delayed placement group (success rate of 100.0%).Conclusion: In the present sample, no statistically significant differences were detected for immediate nonfunctional single-tooth loaded implants under immediate placement condition in comparison with those inserted under delayed placement condition; both protocols had high success rate in maxillary incisors, canines, and premolars areas.
Resumo:
Field trial measurements are used to validate the level crossing rate formula derived in an exact manner recently for the Nakagami-m signal. The formula reveals an excellent fit to measurements in situations other than those for which the Rice model is more appropriate.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Theoretical and empirical studies were conducted on the pattern of nucleotide and amino acid substitution in evolution, taking into account the effects of mutation at the nucleotide level and purifying selection at the amino acid level. A theoretical model for predicting the evolutionary change in electrophoretic mobility of a protein was also developed by using information on the pattern of amino acid substitution. The specific problems studied and the main results obtained are as follows: (1) Estimation of the pattern of nucleotide substitution in DNA nuclear genomes. The pattern of point mutations and nucleotide substitutions among the four different nucleotides are inferred from the evolutionary changes of pseudogenes and functional genes, respectively. Both patterns are non-random, the rate of change varying considerably with nucleotide pair, and that in both cases transitions occur somewhat more frequently than transversions. In protein evolution, substitution occurs more often between amino acids with similar physico-chemical properties than between dissimilar amino acids. (2) Estimation of the pattern of nucleotide substitution in RNA genomes. The majority of mutations in retroviruses accumulate at the reverse transcription stage. Selection at the amino acid level is very weak, and almost non-existent between synonymous codons. The pattern of mutation is very different from that in DNA genomes. Nevertheless, the pattern of purifying selection at the amino acid level is similar to that in DNA genomes, although selection intensity is much weaker. (3) Evaluation of the determinants of molecular evolutionary rates in protein-coding genes. Based on rates of nucleotide substitution for mammalian genes, the rate of amino acid substitution of a protein is determined by its amino acid composition. The content of glycine is shown to correlate strongly and negatively with the rate of substitution. Empirical formulae, called indices of mutability, are developed in order to predict the rate of molecular evolution of a protein from data on its amino acid sequence. (4) Studies on the evolutionary patterns of electrophoretic mobility of proteins. A theoretical model was constructed that predicts the electric charge of a protein at any given pH and its isoelectric point from data on its primary and quaternary structures. Using this model, the evolutionary change in electrophoretic mobilities of different proteins and the expected amount of electrophoretically hidden genetic variation were studied. In the absence of selection for the pI value, proteins will on the average evolve toward a mildly basic pI. (Abstract shortened with permission of author.) ^
Resumo:
The giant pockmark REGAB (West African margin, 3160 m water depth) is an active methane-emitting cold seep ecosystem, where the energy derived from microbially mediated oxidation of methane supports high biomass and diversity of chemosynthetic communities. Bare sediments interspersed with heterogeneous chemosynthetic assemblages of mytilid mussels, vesicomyid clams and siboglinid tubeworms form a complex seep ecosystem. To better understand if benthic bacterial communities reflect the patchy distribution of chemosynthetic fauna, all major chemosynthetic habitats at REGAB were investigated using an interdisciplinary approach combining porewater geochemistry, in situ quantification of fluxes and consumption of methane, as well bacterial community fingerprinting. This study revealed that sediments populated by different fauna assemblages show distinct biogeochemical activities and are associated with distinct sediment bacterial communities. The methane consumption and methane effluxes ranged over one to two orders of magnitude across habitats, and reached highest values at the mussel habitat, which hosted a different bacterial community compared to the other habitats. Clam assemblages had a profound impact on the sediment geochemistry, but less so on the bacterial community structure. Moreover, all clam assemblages at REGAB were restricted to sediments characterized by complete methane consumption in the seafloor, and intermediate biogeochemical activity. Overall, variations in the sediment geochemistry were reflected in the distribution of both fauna and microbial communities; and were mostly determined by methane flux.
Resumo:
Background During recent years laparoscopic cholecystectomy has dramatically increased, sometimes resulting in overtreatment. Aim of this work was to retrospectively analyze all laparoscopic cholecystectomies performed in a single center in order to find the percentage of patients whose surgical treatment may be explained with this general trend, and to speculate about the possible causes. Methods 831 patients who underwent a laparoscopic cholecystectomy from 1999 to 2008 were retrospectively analyzed. Results At discharge, 43.08% of patients were operated on because of at least one previous episode of biliary colic before the one at admission; 14.08% of patients presented with acute lithiasic cholecystitis; 14.68% were operated on because of an increase in bilirubin level; 1.56% were operated on because of a previous episode of jaundice with normal bilirubin at admission; 0.72% had gallbladder adenomas, 0.72% had cholangitis, 0.36% had biliodigestive fistula and one patient (0.12%) had acalculous cholecystitis. By excluding all these patients, 21.18% were operated on without indications. Conclusions The broadening of indications for laparoscopic cholecystectomy is undisputed and can be considered a consequence of new technologies that have been introduced, increased demand from patients, and the need for practice by inexperienced surgeons. If not prevented, this trend could continue indefinitely.
Resumo:
The estimation of phylogenetic divergence times from sequence data is an important component of many molecular evolutionary studies. There is now a general appreciation that the procedure of divergence dating is considerably more complex than that initially described in the 1960s by Zuckerkandl and Pauling (1962, 1965). In particular, there has been much critical attention toward the assumption of a global molecular clock, resulting in the development of increasingly sophisticated techniques for inferring divergence times from sequence data. In response to the documentation of widespread departures from clocklike behavior, a variety of local- and relaxed-clock methods have been proposed and implemented. Local-clock methods permit different molecular clocks in different parts of the phylogenetic tree, thereby retaining the advantages of the classical molecular clock while casting off the restrictive assumption of a single, global rate of substitution (Rambaut and Bromham 1998; Yoder and Yang 2000).
Resumo:
Administration of the antihypercholesterolaemic drug clofibrate stimulates the rates of synthesis of nucleic acids and proteins in rat liver. The biosynthesis of mitochondrial proteins also is enhanced by the drug. In drug-fed animals, the rates of incorporation in vivo of radioactive precursors into DNA, RNA and proteins are stimulated even when the liver undergoes regeneration following partial hepatectomy. The rate of synthesis of mitochondrial proteins in the regenerative phase is higher in clofibrate-fed animals. These effects are consistent with the hepatomegalic and mitochondria-proliferating property of the drug.
Resumo:
Estimates of microbial crude protein (MCP) production by ruminants, using a method based on the excretion of purine derivatives in urine, require an estimate of the excretion of endogenous purine derivatives (PD) by the animal. Current methods allocate a single value to all cattle. An experiment was carried out to compare the endogenous PD excretion in Bos taurus and high-content B. indicus (hereafter, B. indicus) cattle. Five Holstein–Friesian (B. taurus) and 5 Brahman (> 75% B. indicus) steers (mean liveweight 326 ± 3.0 kg) were used in a fasting study. Steers were fed a low-quality buffel grass (Cenchrus ciliaris; 59.4 g crude protein/kg dry matter) hay at estimated maintenance requirements for 19 days, after which hay intake was incrementally reduced for 2 days and the steers were fasted for 7 days. The excretion of PD in urine was measured daily for the last 6 days of the fasting period and the mean represented the daily endogenous PD excretion. Excretion of endogenous PD in the urine of B. indicus steers was less than half that of the B. taurus steers (190 µmol/kg W0.75.day v. 414 µmol/kg W0.75.day; combined s.e. 37.2 µmol/kg W0.75.day; P < 0.001). It was concluded that the use of a single value for endogenous PD excretion is inappropriate for use in MCP estimations and that subspecies-specific values would improve precision.
Resumo:
The effect of substitution of calcium on the anisotropic axial thermal expansion of cordierite was investigated by using a high-temperature X-ray diffraction technique. The compositions were prepared by the sol–gel route. In the Mg2-xCax-Al4Si5O18 system, single-phase cordierite can be prepared for x up to 0.5. Thermal expansion anisotropy (αa–αc) of cordierites reduces progressively by the substitution of increasing amounts of Ca for Mg.
Resumo:
Recent studies have demonstrated that solvation dynamics in many common dipolar liquids contain an initial, ultrafast Gaussian component which may contribute even more than 60% to the total solvation energy. It is also known that adiabatic electron transfer reactions often probe the high-frequency components of the relevant solvent friction (Hynes, J. T. J. Phys. Chem. 1986, 90, 3701). In this paper, we present a theoretical study of the effects of the ultrafast solvent polar modes on the adiabatic electron transfer reactions by using the formalism of Hynes. Calculations have been carried out for a model system and also for water and acetonitrile. It is found that, in general, the ultrafast modes can greatly enhance the rate of electron transfer, even by more than an order of magnitude, over the rate obtained by using only the slow overdamped modes usually considered. For water, this acceleration of the rate can be attributed to the high-frequency intermolecular vibrational and librational modes. For a weakly adiabatic reaction, the rate is virtually indistinguishable from the rate predicted by the Marcus transition state theory. Another important result is that even in this case of ultrafast underdamped solvation, energy diffusion appears to be efficient so that electron transfer reaction in water is controlled essentially by the barrier crossing dynamics. This is because the reactant well frequency is-directly proportional to the rate of the initial Gaussian decay of the solvation time correlation function. As a result, the value of the friction at the reactant well frequency rarely falls below the value required for the Kramers turnover except when the polarizability of the water molecules may be neglected. On the other hand, in acetonitrile, the rate of electron transfer reaction is found to be controlled by the energy diffusion dynamics, although a significant contribution to the rate comes also from the barrier crossing rate. Therefore, the present study calls for a need to understand the relaxation of the high-frequency modes in dipolar liquids.
Resumo:
It has been shown recently that the maximum rate of a 2-real-symbol (single-complex-symbol) maximum likelihood (ML) decodable, square space-time block codes (STBCs) with unitary weight matrices is 2a/2a complex symbols per channel use (cspcu) for 2a number of transmit antennas [1]. These STBCs are obtained from Unitary Weight Designs (UWDs). In this paper, we show that the maximum rates for 3- and 4-real-symbol (2-complex-symbol) ML decodable square STBCs from UWDs, for 2a transmit antennas, are 3(a-1)/2a and 4(a-1)/2a cspcu, respectively. STBCs achieving this maximum rate are constructed. A set of sufficient conditions on the signal set, required for these codes to achieve full-diversity are derived along with expressions for their coding gain.
Resumo:
Cancer-associated mutations in cancer genes constitute a diverse set of mutations associated with the disease. To gain insight into features of the set, substitution, deletion and insertion mutations were analysed at the nucleotide level, from the COSMIC database. The most frequent substitutions were c -> t, g -> a, g -> t, and the most frequent codon changes were to termination codons. Deletions more than insertions, FS (frameshift) indels more than I-F (in-frame) ones, and single-nucleotide indels, were frequent. FS indels cause loss of significant fractions of proteins. The 5'-cut in FS deletions, and 5'-ligation in FS insertions, often occur between pairs of identical bases. Interestingly, the cut-site and 3'-ligation in insertions, and 3'-cut and join-pair in deletions, were each found to be the same significantly often (p < 0.001). It is suggested that these features aid the incorporation of indel mutations. Tumor suppressors undergo larger numbers of mutations, especially disruptive ones, over the entire protein length, to inactivate two alleles. Proto-oncogenes undergo fewer, less-disruptive mutations, in selected protein regions, to activate a single allele. Finally, catalogues, in ranked order, of genes mutated in each cancer, and cancers in which each gene is mutated, were created. The study highlights the nucleotide level preferences and disruptive nature of cancer mutations.