997 resultados para Simultaneous removal


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Catalytic NO decomposition on LaSrMn1-x Ni (x) O4+delta (0 a parts per thousand currency sign x a parts per thousand currency sign 1) is investigated. The activity of NO decomposition increases dramatically after the substitution of Ni for Mn, but decreases when Mn is completely replaced by Ni (x = 1.0). The optimum value is at x = 0.8. These indicate that the catalytic performance of the samples is contributed by the synergistic effect of Mn and Ni. O-2-TPD and H-2-TPR experiments are carried out to explain the change of activity. The former indicates that only when oxygen vacancy is created, could the catalyst show enhanced activity for NO decomposition; the latter suggests that the best activity is obtained from catalyst with the most matched redox potentials (in this work, the biggest Delta T and Delta E values).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

L-Lactate was produced from xylose using electrodialysis culture (ED-C)-associated product separation. In a medium containing 50 g xylose/l, the ED-C was completed in only 32 h (i.e. less than half the time taken by the control culture, without electrodialysis). At 80 g xylose/l, the control culture was unable to consume more than 50 g xylose/1, whereas the ED-C showed increased xylose consumption and was completed by 45 h. The maximum rate of lactate production in the ED-C was higher than that in the control culture. ED-C was also carried out (at 80 g initial xylose/ l) with a supply of fresh xylose-free medium. This ED-C was completed within 30 h, which represents a reduction in fermentation time of 15 h when compared to ED-C without addition of xylose-free medium. Thus, rapid production of L-lactate was achieved by using ED-C which supplied fresh xylose-free medium.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conversion of xylose to l-lactate was carried out by Lactococcus lactis IO-1 using an electrodialysis bioprocess (ED-BP). At 50 g l -1 xylose, the ED-BP was already complete in half the time (32 h) taken by the control culture without electrodialysis (>60 h). At 80 g l -1 xylose, the control culture was unable to consume >50 g l -1 xylose, whereas the ED-BP consumed 75 g l -1 xylose in 45 h. Thus, the simultaneous removal of lactate and acetate by ED-BP was associated with high-speed l-lactate production, increased xylose consumption and an increased l-lactate production. Copyright (C) 1998 Elsevier Science B.V.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The objective of the present study was to assess the simultaneous removal of physiochemical parameters in moderate strength wastewater using a lab scale horizontal subsurface flow constructed wetland (HFCW) with natural zeolite as a substrate. In this study, high-density polyethylene tanks (0.36 m2) were planted with phragmites australis and scirpus maritimus and received 0.012 m3/d to 0.08 m3/d of synthetic wastewater corresponding to a HLR of 0.035 to 0.243 m/d and a COD loading rate of 0.0148 kg COD (m2.d)-1 to 0.026 kg COD (m2.d)-1. The HFCW was subjected to three hydraulic retention times (HRT) for 4, 3 and 2 days respectively. Averaged data reported coincided with the plant age (4 to 55 weeks) and covered the entire cold season and early part of the hot season. Based on the 55 weeks of operation, the HFCW unit with zeolite achieved significantly higher removal for COD (85 to 88%), TN (54 to 96%), NH4-N (50 to 99%) and TSS (91 to 96%) respectively at all HRT. This system was proved to be tolerant to high organic loadings and nutrients, suggesting these substrates as viable options for biological treatment of wastewater.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The acceleration of industrial growth in recent decades on all continents aroused the interest of the companies to counter the impacts produced on the environment, spurred primarily by major disasters in the petroleum industry. In this context, the water produced is responsible for the largest volume of effluent from the production and extraction of oil and natural gas. This effluent has in its composition some critical components such as inorganic salts, heavy metals (Fe, Cu, Zn, Pb, Cd, ), presence of oil and chemicals added in the various production processes. In response to impact, have been triggered by research alternative adsorbent materials for water treatment and water produced, in order to removing oils and acids and heavy metals. Many surveys of diatomaceous earth (diatomite) in Brazil involve studies on the physico-chemical, mineral deposits, extraction, processing and applications. The official estimated Jazi are around 2.5 million tonnes, the main located in the states of Bahia (44%) and Rio Grande do Norte (37,4%). Moreover, these two states appear as large offshore producers, earning a prominent role in research of adsorbents such as diatomite for treatment of water produced. Its main applications are as an agent of filtration, adsorption of oils and greases, industrial load and thermal insulator. The objective of this work was the processing and characterization of diatomite diatomaceous earth obtained from the municipality of Macaíba-RN (known locally as tabatinga) as a low cost regenerative adsorbent for removal of heavy metals in the application of water produced treatment. In this work we adopted a methodology for batch processing, practiced by small businesses located in producing regions of Brazil. The characterization was made by X-ray diffraction (XRD), scanning electron microscopy (SEM) and specific surface area (BET). Research conducted showed that the improvement process used was effective for small volume production of diatomite concentrated. The diatomite obtained was treated by calcination at temperature of 900 oC for 2 hours, with and without fluxing Na2CO3 (4%), according to optimal results in the literature. Column adsorption experiments were conducted to percolation of the in nature, calcined and calcined fluxing diatomites. Effluent was used as a saline solution containing ions of Cu, Zn, Na, Ca and Mg simulating the composition of produced waters in the state of Rio Grande do Norte, Brazil. The breakthrough curves for simultaneous removal of copper ions and zinc as a result, 84.3% for calcined diatomite and diatomite with 97.3 % for fluxing. The calcined fluxing diatomite was more efficient permeability through the bed and removal of copper and zinc ions. The fresh diatomite had trouble with the permeability through the bed under the conditions tested, compared with the other obtained diatomite. The results are presented as promising for application in the petroleum industry

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The produced water is a byproduct formed due to production of petroleum and carries with it a high amount of contaminants such as oil particles in suspension, organic compounds and metals. Thus, these latter pollutants are very difficult to treat because of its high solubility in water. The objective of this work is to use and evaluate a microemulsioned system to remove metals ( K , Mg , Ba , Ca , Cr , Mn , Li , Fe ) of synthetic produced water. For the extraction of metals, it was used a pseudoternary diagram containing the following phases: synthetic produced water as the aqueous phase (AP), hexane as organic phase (OP), and a cosurfactant/surfactant ratio equal to four (C/S = 4) as the third phase, where the OCS (saponified coconut oil) was used as surfactant and n-butanol as cosurfactant. The synthetic produced water was prepared in a bench scale and the region of interest in the diagram for the removal of metals was determined by experimental design called. Ten points located in the phase Winsor II were selected in an area with a large amount of water and small amounts of reagents. The samples were analyzed in atomic absorption spectrometer, and the results were evaluated through a statistical assesment, allowing the efficiency analysis of the effects and their interactions. The results showed percentages of extraction above 90% for the metals manganese, iron, chromium, calcium, barium and magnesium, and around 45% for metals lithium and potassium. The optimal point for the simultaneous removal of metals was calculated using statistical artifact multiple response function (MR). This calculation showed that the point of greatest extraction of metals occurs was the J point, with the composition [72% AP, 9% OP, 19% C/S], obtaining a global extraction percentage about 80%. Considering the aspects analyzed, the microemulsioned system has shown itself to be an effective alternative in the extraction of metals on synthetic produced water remediation

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Autotrophic denitrification coupled with sulfide oxidation represents an interesting alternative for the simultaneous removal of nitrate/nitrite and sulfide from wastewaters. The applicability of such bioprocess is especially advantageous for the post treatment of effluents from anaerobic reactors, since they usually produce sulfides, which can be used as endogenous electron donor for autotrophic denitrification. This study evaluated the effect of sulfide concentration on this bioprocess using nitrate and nitrite as electron acceptors in vertical fixed-bed reactors. The results showed that intermediary sulfur compounds were mainly produced when excess of electron donor was applied, which was more evident when nitrate was used. Visual evidences suggested that elemental sulfur was the intermediary compound produced. There was also evidence that the elemental sulfur previously formed was being used when sulfide was applied in stoichiometric concentration relative to nitrate/nitrite. Nitrite was more readily consumed than nitrate. For both electron acceptors and sulfide concentrations tested, autotrophic denitrification was not affected by residual heterotrophic denitrification via endogenic activity, occurring as a minor additional nitrogen removal process. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A opção por sistemas biológicos prevalece para o tratamento do esgoto sanitário. Nas décadas recentes, sistemas que possuem regiões e/ou zonas anaeróbia, anóxica e aeróbia têm-se mostrado como alternativas atraentes para remoção simultânea de matéria orgânica, nitrogênio e fósforo. No entanto, os aspectos operacionais ainda merecem ser objeto de estudo para alcançar desempenho otimizado. Nesse cenário, com intuito de comparar alternativas para a operação das unidades de tratamento de esgoto, o presente trabalho propôs-se a estudar estratégias operacionais associadas ao monitoramento, em tempo real, sem adição de fonte externa de carbono, para um reator aerado não compartimentado com crescimento suspenso e fluxo contínuo precedido de reator anaeróbio. O sistema experimental, em escala de bancada, era constituído de um reator anaeróbio, com volume útil de 43,54 L, e reator aerado, com volume útil de 68,07 L; sendo que este era formado por sete setores, em série, sem separação física. O estudo foi dividido em duas etapas: I - estudo da variação dos volumes da região aerada e da não aerada; II - estudo da aeração intermitente com ciclo de aeração/agitação pré-fixado e controlado em tempo real por sistema informatizado. Em todas as Etapas do estudo ocorreu elevada remoção de DBO e conversão de NTK para nitrato, contudo não se conseguiu obter desnitrificação em nível desejado. O uso de reatores com setores sequenciais sem divisão física (Etapa I) dificultou a obtenção de regiões distintas predominantemente anóxica e aeróbia, comprometendo a remoção de nitrogênio (principalmente a desnitrificação). A maior eficiência média de remoção de nitrogênio alcançada no reator aerado foi de 35,6% (Etapa II), quando o reator era operado com aeração intermitente sendo o ciclo de aeração/agitação controlado em tempo real. A estratégia de operação com aeração intermitente, estudada na Etapa II, favoreceu a remoção de nitrogênio. A aeração intermitente demonstrou ser uma opção promissora comparada à aeração contínua em setores específicos do reator. O controle automatizado e informatizado em tempo real dos ciclos de aeração/agitação pode ser aplicado no aperfeiçoamento da operação dos sistemas de tratamento de esgoto sanitário.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bioelectrochemical systems could have potential for bioremediation of contaminants either in situ or ex situ. The treatment of a mixture of phenanthrene and benzene using two different tubular microbial fuel cells (MFCs) designed for either in situ and ex situ applications in aqueous systems was investigated over long operational periods (up to 155 days). For in situ deployments, simultaneous removal of the petroleum hydrocarbons (>90% in term of degradation efficiency) and bromate, used as catholyte, (up to 79%) with concomitant biogenic electricity generation (peak power density up to 6.75 mWm−2) were obtained at a hydraulic retention time (HRT) of 10 days. The tubular MFC could be operated successfully at copiotrophic (100 ppm phenanthrene, 2000 ppm benzene at HRT 30 days) and oligotrophic (phenanthrene and benzene, 50 ppb each, HRT 10 days) substrate conditions suggesting its effectiveness and robustness at extreme substrate concentrations in anoxic environments. In the MFC designed for ex situ deployments, optimum MFC performance was obtained at HRT of 30 h giving COD removal and maximum power output of approximately 77% and 6.75 mWm−2 respectively. The MFC exhibited the ability to resist organic shock loadings and could maintain stable MFC performance. Results of this study suggest the potential use of MFC technology for possible in situ/ex situ hydrocarbon-contaminated groundwater treatment or refinery effluents clean-up, even at extreme contaminant level conditions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

O objetivo desta tese foi avaliar a dinâmica do fósforo em cultivo heterotrófico e produção de compostos celulares por Aphanothece microscopica Nägeli visando avaliar a perspectiva de implementação de uma biorrefinaria microalgal. Desta forma, foi avaliado o comportamento do micro-organismo em estudo no cultivo heterotrófico, utilizando como meio de cultivo o efluente de laticínios. O trabalho foi desenvolvido em 3 etapas. Em um primeiro momento foi avaliada a influência da temperatura (20 e 30°C) e os valores máximos e mínimos de nutrientes, em especial do fósforo dissolvido reativo (PDR), disponíveis no efluente de laticínio, na remoção de nutrientes. Os resultados demonstraram que a concentração inicial de fósforo dissolvido e a temperatura exerceram influência no crescimento celular e na eficiência de remoção de nutrientes. Em termos de otimização de processo os cultivos conduzidos a 20°C e maiores concentrações de PDR (5,5 mg.L-1 ) no efluente de laticínio, foram os mais eficientes na conversão de poluentes em biomassa e remoção de nutrientes. A segunda etapa foi desenvolvida com o objetivo de avaliar a dinâmica de distribuição de fósforo na fase líquida e sólida do reator heterotrófico, quando o efluente de laticínio foi tratado pela Aphanothece microscopica Nägeli, a 20°C e nas máximas concentrações de fósforo dissolvido encontradas no efluente. Foi demonstrado que as formas fosforadas na fase líquida do reator se caracterizam pela predominância da fração dissolvida em comparação à particulada e por apresentar como fração predominante a de fósforo orgânico. No que se refere à fase sólida, ficou demonstrado que a Aphanothece microscopica Nägeli, quando cultivada heterotroficamente apresenta 3,8 vezes mais fósforo que o requerido para o crescimento celular. Ficando demonstrado ainda que a remoção biológica de fósforo por Aphanothece microscopica Nägeli pode resultar em substanciais aportes financeiros para as estações de tratamento de efluentes. Uma terceira etapa foi desenvolvida, a qual teve como objetivo avaliar a estimativa de produção de compostos celulares por Aphanothece microscopica Nägeli, a partir do efluente de laticínio, bem como o efeito da redução de temperatura de cultivo no teor de lipídios , no momento em que é obtida a máxima concentração deste componente celular, nas condições otimizadas.Foi obtido na fase logarítmica de crescimento, concentrações de 41,8 % de proteinas, carboidratos 28,5 %, lipídios 10,4 % e minerais 10,8 %. O maior teor de lipídio registrado a 20°C correspondeu a biomassa analisada na fase logarítmica.Com a redução da temperatura para 5°C por um período de 30 h é possível obter concentrações de lipídios 2,4 vezes superior ao registrado na fase logarítmica a 20 °C. No entanto, não foram indicadas diferenças significativas (p≤0,05) em função da temperatura entre as concentrações de lipídios obtidas para a biomassa a 10°C em 40 h. O perfil de ácidos graxos da biomassa gerada a 20°C, apresentou como ácidos graxos majoritários, os ácidos graxos: palmítico, oléico, γ-linolênico, palmitoleico e esteárico, resultando um aumento na concentração de ácidos graxos saturados as espensa dos insaturados, quando a temperatura é reduzida. Em paralelo,um reator heterotrófico descontinuo foi definido, ficando demonstrado que a extrapolação da operação em batelada para contínua requer um biorreator heterotrófico com volume útil de trabalho de 240,51 m 3 , permitindo tratar 950 m3 diários de efluente, gerando 11,8 kg.d-1 de biomassa útil para produção de compostos celulares por Aphanothece microscopica Nägeli, visando à simultânea remoção de matéria orgânica, nitrogênio total e fósforo total, gerando insumos que podem suportar a implementação de uma biorrefinaria microalgal.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The acceleration of industrial growth in recent decades on all continents aroused the interest of the companies to counter the impacts produced on the environment, spurred primarily by major disasters in the petroleum industry. In this context, the water produced is responsible for the largest volume of effluent from the production and extraction of oil and natural gas. This effluent has in its composition some critical components such as inorganic salts, heavy metals (Fe, Cu, Zn, Pb, Cd, ), presence of oil and chemicals added in the various production processes. In response to impact, have been triggered by research alternative adsorbent materials for water treatment and water produced, in order to removing oils and acids and heavy metals. Many surveys of diatomaceous earth (diatomite) in Brazil involve studies on the physico-chemical, mineral deposits, extraction, processing and applications. The official estimated Jazi are around 2.5 million tonnes, the main located in the states of Bahia (44%) and Rio Grande do Norte (37,4%). Moreover, these two states appear as large offshore producers, earning a prominent role in research of adsorbents such as diatomite for treatment of water produced. Its main applications are as an agent of filtration, adsorption of oils and greases, industrial load and thermal insulator. The objective of this work was the processing and characterization of diatomite diatomaceous earth obtained from the municipality of Macaíba-RN (known locally as tabatinga) as a low cost regenerative adsorbent for removal of heavy metals in the application of water produced treatment. In this work we adopted a methodology for batch processing, practiced by small businesses located in producing regions of Brazil. The characterization was made by X-ray diffraction (XRD), scanning electron microscopy (SEM) and specific surface area (BET). Research conducted showed that the improvement process used was effective for small volume production of diatomite concentrated. The diatomite obtained was treated by calcination at temperature of 900 oC for 2 hours, with and without fluxing Na2CO3 (4%), according to optimal results in the literature. Column adsorption experiments were conducted to percolation of the in nature, calcined and calcined fluxing diatomites. Effluent was used as a saline solution containing ions of Cu, Zn, Na, Ca and Mg simulating the composition of produced waters in the state of Rio Grande do Norte, Brazil. The breakthrough curves for simultaneous removal of copper ions and zinc as a result, 84.3% for calcined diatomite and diatomite with 97.3 % for fluxing. The calcined fluxing diatomite was more efficient permeability through the bed and removal of copper and zinc ions. The fresh diatomite had trouble with the permeability through the bed under the conditions tested, compared with the other obtained diatomite. The results are presented as promising for application in the petroleum industry

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The produced water is a byproduct formed due to production of petroleum and carries with it a high amount of contaminants such as oil particles in suspension, organic compounds and metals. Thus, these latter pollutants are very difficult to treat because of its high solubility in water. The objective of this work is to use and evaluate a microemulsioned system to remove metals ( K , Mg , Ba , Ca , Cr , Mn , Li , Fe ) of synthetic produced water. For the extraction of metals, it was used a pseudoternary diagram containing the following phases: synthetic produced water as the aqueous phase (AP), hexane as organic phase (OP), and a cosurfactant/surfactant ratio equal to four (C/S = 4) as the third phase, where the OCS (saponified coconut oil) was used as surfactant and n-butanol as cosurfactant. The synthetic produced water was prepared in a bench scale and the region of interest in the diagram for the removal of metals was determined by experimental design called. Ten points located in the phase Winsor II were selected in an area with a large amount of water and small amounts of reagents. The samples were analyzed in atomic absorption spectrometer, and the results were evaluated through a statistical assesment, allowing the efficiency analysis of the effects and their interactions. The results showed percentages of extraction above 90% for the metals manganese, iron, chromium, calcium, barium and magnesium, and around 45% for metals lithium and potassium. The optimal point for the simultaneous removal of metals was calculated using statistical artifact multiple response function (MR). This calculation showed that the point of greatest extraction of metals occurs was the J point, with the composition [72% AP, 9% OP, 19% C/S], obtaining a global extraction percentage about 80%. Considering the aspects analyzed, the microemulsioned system has shown itself to be an effective alternative in the extraction of metals on synthetic produced water remediation