942 resultados para Simultaneous Saccharification And Fermentation
Resumo:
This paper describes a feasibility study of a for lactic acid production integrated with are treatment of wastewater from an industrial starch plant. Rhizopus oryzae two strains, Rhizopus arrhizus and Rhizopus oligosporus were tested with respect to their capability to carry out simultaneous saccharification and fermentation to lactic acid using potato wastewater. Rhizopus arrhizus DAR 36017 was identified as a suitable strain that demonstrated a high capacity for starch saccharification and lactic acid synthesis. The optimal conditions, in terms of pH, temperature and starch concentration, for lactic acid production were determined. The selected fungal strain grew well in a pH range from 3.0 to 7.0. The addition of CaCO(3)10 g dm(-3) maintained the pH at 5.0-6.0 and significantly enhanced lactic acid production. Kinetic study revealed that almost complete starch saccharification and a lactic acid yield of 450g kg(-1) could be achieved in 20 h and 28 h cultivation, respectively. The maximum lactic acid production 21 g dm(-3) and mycelial biomass (1.7 g dm(-3)) were obtained at 30degreesC. Besides the multiple bioproducts, total removal of suspended solids and 90% reduction of COD were achieved in a single no-aseptic operation. (C) 2003 Society of Chemical Industry.
Resumo:
The present work investigated the potential of different residual lignocellulosic materials generated in rural and urban areas (coconut fibre mature, green coconut shell and mature coconut shell), and vegetable cultivated in inhospitable environments (cactus) aimed at the production of ethanol, being all materials abundant in the Northeast region of Brazil. These materials were submitted to pretreatments with alkaline hydrogen peroxide followed by sodium hydroxide (AHP-SHP), autohydrolysis (AP), hydrothermal catalyzed with sodium hydroxide (HCSHP) and alkali ethanol organosolv (AEOP). These materials pretreated were submitted to enzymatic hydrolysis and strategies of simultaneous saccharification and fermentation (SSF) and saccharification and fermentation semi-simultaneous (SSSF) by Saccharomyces cerevisiae, Zymomonas mobilis and Pichia stipitis. It was also evaluated the presence of inhibitory compounds (hydroxymethylfurfural, furfural, acetic acid, formic acid and levulinic acid) and seawater during the fermentative process. Materials pretreated with AHP-SHP have resulted in delignification of the materials in a range between 54 and 71%, containing between 51.80 and 54.91% of cellulose, between 17.65 and 28.36% of hemicellulose, between 7.99 and 10.12% of lignin. Enzymatic hydrolysis resulted in the conversions in glucose between 68 and 76%. Conversion yields in ethanol using SSF and SSSF for coconut fibre mature pretreated ranged from 0.40 and 0.43 g/g, 0.43 and 0.45 g/g, respectively. Materials pretreated by AP showed yields of solids between 42.92 and 92.74%, containing between 30.65 and 51.61% of cellulose, 21.34 and 41.28% of lignin. Enzymatic hydrolysis resulted in glucose conversions between 84.10 and 92.52%. Proceeds from conversion into ethanol using green coconut shell pretreated, in strategy SSF and SSSF, were between 0.43 and 0.45 g/g. Coconut fibre mature pretreated by HCSHP presented solids yields between 21.64 and 60.52%, with increased in cellulose between 28.40 and 131.20%, reduction of hemicellulose between 43.22 and 69.04% and reduction in lignin between 8.27 and 89.13%. Enzymatic hydrolysis resulted in the conversion in glucose of 90.72%. Ethanol yields using the SSF and SSSF were 0.43 and 0.46 g/g, respectively. Materials pretreated by AEOP showed solid reductions between 10.75 and 43.18%, cellulose increase up to 121.67%, hemicellulose reduction up to 77.09% and lignin reduced up to 78.22%. Enzymatic hydrolysis resulted in the conversion of glucose between 77.54 and 84.27%. Yields conversion into ethanol using the SSF and SSSF with cactus pretreated ranged from 0.41 and 0.44 g/g, 0.43 and 0.46 g/g, respectively. Fermentations carried out in bioreactors resulted in yields and ethanol production form 0.42 and 0.46 g/g and 7.62 and 12.42 g/L, respectively. The inhibitory compounds showed negative synergistic effects in fermentations performed by P. stipitis, Z. mobilis and S. cerevisiae. Formic acid and acetic acid showed most significant effects among the inhibitory compounds, followed by hydroxymethylfurfural, furfural and levulinic acid. Fermentations carried out in culture medium diluted with seawater showed promising results, especially for S. cerevisiae (0.50 g/g) and Z. mobilis (0.49 g/g). The different results obtained in this study indicate that lignocellulosic materials, pretreatments, fermentative processes strategies and the microorganisms studied deserve attention because they are promising and capable of being used in the context of biorefinery, aiming the ethanol production.
Resumo:
High yields of hemicellulosic and cellulosic sugars are critical in obtaining economical conversion of agricultural residues to ethanol. To optimize pretreatment conditions, we evaluated oxalic acid loading rates, treatment temperatures and times in a 2(3) full factorial design. Response-surface analysis revealed an optimal oxalic acid pretreatment condition to release sugar from the cob of Zea mays L ssp. and for Pichia stipitis CBS 6054. To ferment the residual cellulosic sugars to ethanol following enzymatic hydrolysis, highest saccharification and fermentation yields were obtained following pretreatment at 180 degrees C for 50 min with 0.024 g oxalic acid/g substrate. Under these conditions, only 7.5% hemicellulose remained in the pretreated substrate. The rate of cellulose degradation was significantly less than that of hemicellulose and its hydrolysis was not as extensive. Subsequent enzymatic saccharification of the residual cellulose was strongly affected by the pretreatment condition with cellulose hydrolysis ranging between 26.0% and 76.2%. The residual xylan/lignin ratio ranged from 0.31 to 1.85 depending on the pretreatment condition. Fermentable sugar and ethanol were maximal at the lowest ratio of xylan/lignin and at high glucan contents. The model predicts optimal condition of oxalic acid pretreatment at 168 degrees C, 74 min and 0.027 g/g of oxalic acid. From these findings, we surmised that low residual xylan was critical in obtaining maximal glucose yields from saccharification. Published by Elsevier Ltd.
Resumo:
At present, the sporadic occurrence of human rabies in Brazil can be attributed primarily to dog- and vampire bat-related rabies viruses. Reverse transcription loop-mediated isothermal amplification (RT-LAMP) was employed as a simultaneous detection method for both rabies field variants within 60 min. Vampire bat-related rabies viruses could be distinguished from dog variants by digesting amplicons of the RT-LAMP reaction using the restriction enzyme Alwl. Amplification and digestion could both be completed within 120 min after RNA extraction. In addition, the RI-LAMP assay also detected rabies virus in isolates from Brazilian frugivorous bats and Ugandan dog, bovine and goat samples. In contrast, there were false negative results from several Brazilian insectivorous bats and all of Chinese dog, pig, and bovine samples using the RI-LAMP assay. This study showed that the RT-LAMP assay is effective for the rapid detection of rabies virus isolates from the primary reservoir in Brazil. Further improvements are necessary so that the RT-LAMP assay can be employed for the universal detection of genetic variants of rabies virus in the field. (C) 2010 Elsevier B.V. All rights reserved.
GP5+/6+ SYBR Green methodology for simultaneous screening and quantification of human papillomavirus
Resumo:
Background: Detection and quantification of human papillomavirus (HPV) may help in predicting the evolution of HPV infection and progression of associated lesions. Objectives: We propose a novel protocol using consensus primers GP5+/6+ in a SYBR Green quantitative real-time (Q-RT) polymerase chain reaction (PCR). The strategy permits screening for HPV infection and viral load quantification simultaneously. Study design: DNA from 153 archived cervical samples, previously tested for HPV detection by GP5+/6+ PCR and typed by EIA-RLB (enzyme immunoassay-reverse line blot) or sequence analysis, was analysed using SYBR Green Q-RT PCR. Melting temperature assay (T(m)) and cycle threshold (C(t)) were used to evaluate HPV positivity and viral load. The T(m) in the range of 77-82 degrees C was considered to be positive for HPV-DNA. HPV results generated through GP5+/6+ conventional PCR were considered the gold standard against which sensitivity and specificity of our assay were measured. Results: Out of 104 HPV positive samples, 100 (96.2%) were also determined as positive by SYBR Green Q-RT PCR; of the 49 HPV-negative samples, all were determined as negative. There was an excellent positivity agreement (K = 0.94) between the SYBR Green Q-RT and the previous methods employed. The specificity and sensitivity were 100% and 96.2%, respectively. Comparison of SYBR Green Q-RT and TaqMan oligo-probe technologies gave an excellent concordance (pc = 0.95) which validated the proposed strategy. Conclusions: We propose a sensitive and easy-to-perform technique for HPV screening and viral load quantification simultaneously. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
A key aspect of decision-making in a disaster response scenario is the capability to evaluate multiple and simultaneously perceived goals. Current competing approaches to build decision-making agents are either mental-state based as BDI, or founded on decision-theoretic models as MDP. The BDI chooses heuristically among several goals and the MDP searches for a policy to achieve a specific goal. In this paper we develop a preferences model to decide among multiple simultaneous goals. We propose a pattern, which follows a decision-theoretic approach, to evaluate the expected causal effects of the observable and non-observable aspects that inform each decision. We focus on yes-or-no (i.e., pursue or ignore a goal) decisions and illustrate the proposal using the RoboCupRescue simulation environment.
Resumo:
This study aims to develop an innovative carbon fibre reinforced polymer (CFRP) laminate with a U configuration to address strengthening interventions, where the increment of both flexural and shear capacity of reinforced concrete (RC) elements is required. This strengthening solution combines the near surface mounted (NSM) and embedded through section (ETS) techniques in the same application, since these techniques have already evidenced high performance on flexural and shear strengthening of RC beams using FRP systems, respectively. In fact, the proposed hybrid technique aims to mobilize the advantages provided by these two strengthening techniques by using an innovative CFRP laminate. The strengthening efficacy of this new hybrid NSM/ETS technique was numerically assessed and compared to the corresponding efficiency of NSM and ETS techniques applied separately for the flexural and shear strengthening of RC beams, respectively. The numerical models are described and the main relevant results are presented and discussed.
Resumo:
The efficient utilization of lignocellulosic biomass and the reduction of production cost are mandatory to attain a cost-effective lignocellulose-to-ethanol process. The selection of suitable pretreatment that allows an effective fractionation of biomass and the use of pretreated material at high-solid loadings on saccharification and fermentation (SSF) processes are considered promising strategies for that purpose. Eucalyptus globulus wood was fractionated by organosolv process at 200 C for 69 min using 56% of glycerol-water. A 99% of cellulose remained in pretreated biomass and 65% of lignin was solubilized. Precipitated lignin was characterized for chemical composition and thermal behavior, showing similar features to commercial lignin. In order to produce lignocellulosic ethanol at high-gravity, a full factory design was carried to assess the liquid to solid ratio (3e9 g/g) and enzyme to solid ratio (8e16 FPU/g) on SSF of delignified Eucalyptus. High ethanol concentration (94 g/L) corresponding to 77% of conversion at 16FPU/g and LSR ¼ 3 g/g using an industrial and thermotolerant Saccharomyces cerevisiae strain was successfully produced from pretreated biomass. Process integration of a suitable pretreatment, which allows for whole biomass valorization, with intensified saccharification-fermentation stages was shown to be feasible strategy for the co-production of high ethanol titers, oligosaccharides and lignin paving the way for cost-effective Eucalyptus biorefinery.
Resumo:
A case is described of a patient who presented almost simultaneously the impression that his left arm was amputated and the feeling of the presence of his invisible Doppelgänger. While these body scheme disorders have both been described after (right) parietal lesions, a right frontal opercular ischaemic stroke was found in the neurological work up. Diffusion tensor imaging showed that the stroke involved the ventral bundle of the superior longitudinal fasciculus that connects the parietal to the frontal lobe. The unusual clinical presentation of this frontal lesion may have been due to a 'diaschisis'-like phenomenon via the superior longitudinal fasciculus.
Resumo:
Meiosis in triploids faces the seemingly insuperable difficulty of dividing an odd number of chromosome sets by two. Triploid vertebrates usually circumvent this problem through either asexuality or some forms of hybridogenesis, including meiotic hybridogenesis that involve a reproductive community of different ploidy levels and genome composition. Batura toads (Bufo baturae; 3n = 33 chromosomes), however, present an all-triploid sexual reproduction. This hybrid species has two genome copies carrying a nucleolus-organizing region (NOR+) on chromosome 6, and a third copy without it (NOR-). Males only produce haploid NOR+ sperm, while ova are diploid, containing one NOR+ and one NOR- set. Here, we conduct sibship analyses with co-dominant microsatellite markers so as (i) to confirm the purely clonal and maternal transmission of the NOR- set, and (ii) to demonstrate Mendelian segregation and recombination of the NOR+ sets in both sexes. This new reproductive mode in vertebrates ('pre-equalizing hybrid meiosis') offers an ideal opportunity to study the evolution of non-recombining genomes. Elucidating the mechanisms that allow simultaneous transmission of two genomes, one of Mendelian, the other of clonal inheritance, might shed light on the general processes that regulate meiosis in vertebrates.
Resumo:
Background: In the yeast biomass production process, protein carbonylation has severe adverse effects since it diminishes biomass yield and profitability of industrial production plants. However, this significant detriment of yeast performance can be alleviated by increasing thioredoxins levels. Thioredoxins are important antioxidant defenses implicated in many functions in cells, and their primordial functions include scavenging of reactive oxygen species that produce dramatic and irreversible alterations such as protein carbonylation. Results: In this work we have found several proteins specifically protected by yeast Thioredoxin 2 (Trx2p). Bidimensional electrophoresis and carbonylated protein identification from TRX-deficient and TRX-overexpressing cells revealed that glycolysis and fermentation-related proteins are specific targets of Trx2p protection. Indeed, the TRX2 overexpressing strain presented increased activity of the central carbon metabolism enzymes. Interestingly, Trx2p specifically preserved alcohol dehydrogenase I (Adh1p) from carbonylation, decreased oligomer aggregates and increased its enzymatic activity. Conclusions: The identified proteins suggest that the fermentative capacity detriment observed under industrial conditions in T73 wine commercial strain results from the oxidative carbonylation of specific glycolytic and fermentation enzymes. Indeed, increased thioredoxin levels enhance the performance of key fermentation enzymes such as Adh1p, which consequently increases fermentative capacity.
Resumo:
Simultaneous localization and mapping(SLAM) is a very important problem in mobile robotics. Many solutions have been proposed by different scientists during the last two decades, nevertheless few studies have considered the use of multiple sensors simultane¬ously. The solution is on combining several data sources with the aid of an Extended Kalman Filter (EKF). Two approaches are proposed. The first one is to use the ordinary EKF SLAM algorithm for each data source separately in parallel and then at the end of each step, fuse the results into one solution. Another proposed approach is the use of multiple data sources simultaneously in a single filter. The comparison of the computational com¬plexity of the two methods is also presented. The first method is almost four times faster than the second one.
Resumo:
The aim of this work was to develop and validate simple, accurate and precise spectroscopic methods (multicomponent, dual wavelength and simultaneous equations) for the simultaneous estimation and dissolution testing of ofloxacin and ornidazole tablet dosage forms. The medium of dissolution used was 900 ml of 0.01N HCl, using a paddle apparatus at a stirring rate of 50 rpm. The drug release was evaluated by developed and validated spectroscopic methods. Ofloxacin and ornidazole showed 293.4 and 319.6nm as λmax in 0.01N HCl. The methods were validated to meet requirements for a global regulatory filing. The validation included linearity, precision and accuracy. In addition, recovery studies and dissolution studies of three different tablets were compared and the results obtained show no significant difference among products.