831 resultados para Simulator. Educational Robotics. Virtual Environment
Resumo:
Human locomotion is known to be influenced by observation of another person's gait. For example, athletes often synchronize their step in long distance races. However, how interaction with a virtual runner affects the gait of a real runner has not been studied. We investigated this by creating an illusion of running behind a virtual model (VM) using a treadmill and large screen virtual environment showing a video of a VM. We looked at step synchronization between the real and virtual runner and at the role of the step frequency (SF) in the real runner's perception of VM speed. We found that subjects match VM SF when asked to match VM speed with their own (Figure 1). This indicates step synchronization may be a strategy of speed matching or speed perception. Subjects chose higher speeds when VMSF was higher (though VM was 12km/h in all videos). This effect was more pronounced when the speed estimate was rated verbally while standing still. (Figure 2). This may due to correlated physical activity affecting the perception of VM speed [Jacobs et al. 2005]; or step synchronization altering the subjects' perception of self speed [Durgin et al. 2007]. Our findings indicate that third person activity in a collaborative virtual locomotive environment can have a pronounced effect on an observer's gait activity and their perceptual judgments of the activity of others: the SF of others (virtual or real) can potentially influence one's perception of self speed and lead to changes in speed and SF. A better understanding of the underlying mechanisms would support the design of more compelling virtual trainers and may be instructive for competitive athletics in the real world. © 2009 ACM.
co-creativepen toolkit: a pen-based 3d toolkit for children cooperatly designing virtual environment
Resumo:
Co-CreativePen Toolkit is a pen-based 3D toolkit for children cooperatly designing virtual environment. This toolkit is used to construct different applications involved with distributedpen-based 3D interaction. In this toolkit,sketch method is encapsulated as kinds of interaction techniques. Children can use pen to construct 3D and IBR objects, to navigate in the virtual world, to select and manipulate virtual objects, and to communicate with other children. Children can use pen to select other children in the virtual world, and use pen to write message to children selected The distributed architecture of Co-CreativePen Toolkit is based on the CORBA. A common scene graph is managed in the server with several copies of this graph are managed in every client.Every changes of the scene graph in client will cause the change in the server and other client.
Resumo:
The original concept was to create a 'simulation' which would provide trainee teachers, specializing in Information and Communications Technology (ICT) with the opportunity to explore a primary school environment. Within the simulation, factors affecting the development and implementation of ICT would be modelled so that trainees would be able to develop the skills, knowledge and understanding necessary to identify appropriate strategies to overcome the limitations. To this end, we have developed Allsorts Primary - the prototype of a simulated interactive environment, representing a typical primary school
Resumo:
Nowadays, the realization of the Virtual Factory (VF) is the strategic goal of many manufacturing enterprises for the coming years. The industrial scenario is characterized by the dynamics of innovations increment and the product life cycle became shorter. Furthermore products and the corresponding manufacturing processes get more and more complex. Therefore, companies need new methods for the planning of manufacturing systems.
To date, the efforts have focused on the creation of an integrated environment to design and manage the manufacturing process of a new product. The future goal is to integrate Virtual Reality (VR) tools into the Product Lifecycle Management of the manufacturing industries.
In order to realize this goal the authors have conducted a study to perform VF simulation steps for a supplier of Industrial Automation Systems and have provided a structured approach focusing on interaction between simulation software and VR hardware tools in order to simulate both robotic and
manual work cells.
The first results of the study in progress have been carried out in the VR Laboratory of the Competence Regional Centre for the qualification of the Transportation Systems that has been founded by Campania Region.
Resumo:
Innovation in virtual reality and motion sensing devices is pushing the development of virtual communication platforms towards completely immersive scenarios, which require full user interaction and create complex sensory experiences. This evolution influences user experiences and creates new paradigms for interaction, leading to an increased importance of user evaluation and assessment on new systems interfaces and usability, to validate platform design and development from the users’ point of view. The REVERIE research project aims to develop a virtual environment service for realistic inter-personal interaction. This paper describes the design challenges faced during the development process of user interfaces and the adopted methodological approach to user evaluation and assessment.
Resumo:
Thegoalofthepresentreviewistoexplainhowimmersivevirtualenvironmenttechnology(IVET)canbeusedforthestudyofsocialinteractionsandhowtheuseofvirtualhumansinimmersivevirtualenvironmentscanadvanceresearchandapplicationinmanydifferentfields.Researchersstudyingindividualdifferencesinsocialinteractionsaretypicallyinterestedinkeepingthebehaviorandtheappearanceoftheinteractionpartnerconstantacrossparticipants.WithIVETresearchershavefullcontrolovertheinteractionpartners,canstandardizethemwhilestillkeepingthesimulationrealistic.Virtualsimulationsarevalid:growingevidenceshowsthatindeedstudiesconductedwithIVETcanreplicatesomewell-knownfindingsofsocialpsychology.Moreover,IVETallowsresearcherstosubtlymanipulatecharacteristicsoftheenvironment(e.g.,visualcuestoprimeparticipants)orofthesocialpartner(e.g.,his/herrace)toinvestigatetheirinfluencesonparticipants'behaviorandcognition.Furthermore,manipulationsthatwouldbedifficultorimpossibleinreallife(e.g.,changingparticipants'height)canbeeasilyobtainedwithIVET.Besidetheadvantagesfortheoreticalresearch,weexplorethemostrecenttrainingandclinicalapplicationsofIVET,itsintegrationwithothertechnologies(e.g.,socialsensing)andfuturechallengesforresearchers(e.g.,makingthecommunicationbetweenvirtualhumansandparticipantssmoother).
Resumo:
This research focuses on generating aesthetically pleasing images in virtual environments using the particle swarm optimization (PSO) algorithm. The PSO is a stochastic population based search algorithm that is inspired by the flocking behavior of birds. In this research, we implement swarms of cameras flying through a virtual world in search of an image that is aesthetically pleasing. Virtual world exploration using particle swarm optimization is considered to be a new research area and is of interest to both the scientific and artistic communities. Aesthetic rules such as rule of thirds, subject matter, colour similarity and horizon line are all analyzed together as a multi-objective problem to analyze and solve with rendered images. A new multi-objective PSO algorithm, the sum of ranks PSO, is introduced. It is empirically compared to other single-objective and multi-objective swarm algorithms. An advantage of the sum of ranks PSO is that it is useful for solving high-dimensional problems within the context of this research. Throughout many experiments, we show that our approach is capable of automatically producing images satisfying a variety of supplied aesthetic criteria.