953 resultados para Simulator of Human Intestinal Microbial Ecosystem (SHIME)
Resumo:
This study, investigating 263 women undergoing trans-vaginal oocyte retrieval for in vitro fertilisation (IVF) found that microorganisms colonising follicular fluid contributed to adverse IVF (pre-implantation) and pregnancy (post-implantation) outcomes including poor quality embryos, failed pregnancy and early pregnancy loss (< 37 weeks gestation). Some microorganisms also showed in vitro growth patterns in liquid media that appeared to be enhanced by the hormonal stimulation protocol used for oocyte retrieval. Elaborated cytokines within follicular fluid were also associated with adverse IVF outcomes. This study is imperative because infertility affects 16% of the human population and the numbers of couples needing assistance continues to increase. Despite significant improvements in the technical aspects of assisted reproductive technologies (ART), the live birth rate has not increased proportionally. Overt genital tract infection has been associated with both infertility and adverse pregnancy outcomes (including miscarriage and preterm birth) as a direct result of the infection or the host response to it. Importantly, once inflammation had become established, medical treatment often failed to prevent these significant adverse outcomes. Current evaluations of fertility focus on the ovary as a site of steroid hormone production and ovulation. However, infertility as a result of subclinical colonisation of the ovary has not been reported. Furthermore, identification of the microorganisms present in follicular fluid and the local cytokine profile may provide clinicians with an early indication of the prognosis for IVF treatment in infertile couples, thus allowing antimicrobial treatment and/or counselling about possible IVF failure. During an IVF cycle, multiple oocytes undergo maturation in vivo in response to hormonal hyperstimulation. Oocytes for in vitro insemination are collected trans-vaginally. The follicular fluid that bathes the maturing oocyte in vivo, usually is discarded as part of the IVF procedure, but provides a unique opportunity to investigate microbial causes of adverse IVF outcomes. Some previous studies have identified follicular fluid markers that predict IVF pregnancy outcomes. However, there have not been any detailed microbiological studies of follicular fluid. For this current study, paired follicular fluid and vaginal secretion samples were collected from women undergoing IVF cycles to determine whether microorganisms in follicular fluid were associated with adverse IVF outcomes. Microorganisms in follicular fluid were regarded as either "colonisers" or "contaminants"; colonisers, if they were unique to the follicular fluid sample, and contaminants if the same microorganisms were detected in the vaginal and follicular fluid samples indicating that the follicular fluid was merely contaminated during the oocyte retrieval process. Quite unexpectedly, by these criteria, we found that follicular fluid from approximately 30% of all subjects was colonised with bacteria. Fertile and infertile women with colonised follicular fluid had decreased embryo transfer rates and decreased pregnancy rates compared to women with contaminated follicular fluids. The observation that follicular fluid was not always sterile, but contained a diverse range of microorganisms, is novel. Many of the microorganisms we detected in follicular fluid are known opportunistic pathogens that have been detected in upper genital tract infections and are associated with adverse pregnancy outcomes. Bacteria were able to survive for at least 28 weeks in vitro, in cultures of follicular fluid. Within 10 days of establishing these in vitro cultures, several species (Lactobacillus spp., Bifidobacterium spp., Propionibacterium spp., Streptococcus spp. and Salmonella entericus) had formed biofilms. Biofilms play a major role in microbial pathogenicity and persistence. The propensity of microbial species to form biofilms in follicular fluid suggests that successful treatment of these infections with antimicrobials may be difficult. Bifidobacterium spp. grew, in liquid media, only if concentrations of oestradiol and progesterone were similar to those achieved in vivo during an IVF cycle. In contrast, the growth of Streptococcus agalactiae and Escherichia coli was inhibited or abolished by the addition of these hormones to culture medium. These data suggest that the likelihood of microorganisms colonising follicular fluid and the species of bacteria involved is influenced by the stage of the menstrual cycle and, in the case of IVF, the nature and dose of steroid hormones administered for the maturation of multiple oocytes in vivo. Our findings indicate that the elevated levels of steroid hormones during an IVF cycle may influence the microbial growth within follicular fluid, suggesting that the treatment itself will impact on the microflora present in the female upper genital tract during pre-conception and early post-conception phases of the cycle. The effect of the host immune response on colonising bacteria and on the outcomes of IVF also was investigated. White blood cells reportedly compose between 5% and 15% of the cell population in follicular fluid. The follicular membrane is semi-permeable and cells are actively recruited as part of the normal menstrual cycle and in response to microorganisms. A previous study investigated follicular fluid cytokines from infertile women and fertile oocyte donors undergoing IVF, and concluded that there were no significant differences in the cytokine concentrations between the two groups. However, other studies have reported differences in the follicular fluid cytokine levels associated with infertile women with endometriosis or polycystic ovary syndrome. In this study, elevated levels of interleukin (IL)-1 á, IL-1 â and vascular endothelial growth factor (VEGF) in vaginal fluid were associated with successful fertilisation, which may be useful marker for successful fertilisation outcomes for women trying to conceive naturally or prior to oocyte retrieval for IVF. Elevated levels of IL-6, IL-12p40, granulocyte colony stimulating factor (GCSF) and interferon-gamma (IFN ã) in follicular fluid were associated with successful embryo transfer. Elevated levels of pro-inflammatory IL-18 and decreased levels of anti-inflammatory IL-10 were identified in follicular fluid from women with idiopathic infertility. Successful fertilisation and implantation is dependent on a controlled pro-inflammatory environment, involving active recruitment of pro-inflammatory mediators to the genital tract as part of the menstrual cycle and early pregnancy. However, ongoing pregnancy requires an enhanced anti-inflammatory environment to ensure that the maternal immune system does not reject the semi-allergenic foetus. The pro-inflammatory skew in the follicular fluid of women with idiopathic infertility, correlates with normal rates of fertilisation, embryo discard and embryo transfer, observed for this cohort, which were similar to the outcomes observed for fertile women. However, their pregnancy rate was reduced compared to fertile women. An altered local immune response in follicular fluid may provide a means of explaining infertility in this cohort, previously defined as 'idiopathic'. This study has found that microorganisms colonising follicular fluid may have contributed to adverse IVF and pregnancy outcomes. Follicular fluid bathes the cumulus oocyte complex during the in vivo maturation process, and microorganisms in the fluid, their metabolic products or the local immune response to these microorganisms may result in damage to the oocytes, degradation of the cumulus or contamination of the IVF culture system. Previous studies that have discounted bacterial contamination of follicular fluid as a cause of adverse IVF outcomes failed to distinguish between bacteria that were introduced into the follicular fluid at the time of trans-vaginal oocyte retrieval and those that colonised the follicular fluid. Those bacteria that had colonised the fluid may have had time to form biofilms and to elicit a local immune response. Failure to draw this distinction has previously prevented consideration of bacterial colonisation of follicular fluid as a cause of adverse IVF outcomes. Several observations arising from this study are of significance to IVF programs. Follicular fluid is not always sterile and colonisation of follicular fluid is a cause of adverse IVF and pregnancy outcomes. Hormonal stimulation associated with IVF may influence whether follicular fluid is colonised and enhance the growth of specific species of bacteria within follicular fluid. Bacteria in follicular fluid may form biofilms and literature has reported that this may influence their susceptibility to antibiotics. Monitoring the levels of selected cytokines within vaginal secretions may inform fertilisation outcomes. This study has identified novel factors contributing to adverse IVF outcomes and that are most likely to affect also natural conception outcomes. Early intervention, possibly using antimicrobial or immunological therapies may reduce the need for ART and improve reproductive health outcomes for all women.
Resumo:
A study was conducted, in association with the Alabama and Mississippi National Estuarine Research Reserves (NERRs) in the Gulf of Mexico (GoM) as well as the Georgia, South Carolina, and North Carolina NERRs in the Southeast (SE), to evaluate the impacts of coastal development on tidal creek sentinel habitats, including potential impacts to human health and well-being. Uplands associated with Southeast and Gulf of Mexico tidal creeks, and the salt marshes they drain, are popular locations for building homes, resorts, and recreational facilities because of the high quality of life and mild climate associated with these environments. Tidal creeks form part of the estuarine ecosystem characterized by high biological productivity, great ecological value, complex environmental gradients, and numerous interconnected processes. This research combined a watershed-level study integrating ecological, public health and human dimension attributes with watershed-level land cover data. The approach used for this research was based upon a comparative watershed and ecosystem approach that sampled tidal creek networks draining developed watersheds (e.g., suburban, urban, and industrial) as well as undeveloped sites (Holland et al. 2004, Sanger et al. 2008). The primary objective of this work was to define the relationships between coastal development with its concomitant land cover changes, and non-point source pollution loading and the ecological and human health and wellbeing status of tidal creek ecosystems. Nineteen tidal creek systems, located along the Southeastern United States coast from southern North Carolina to southern Georgia, and five Gulf of Mexico systems from Alabama and Mississippi were sampled during summer (June-August) 2005, 2006 (SE) and 2008 (GoM). Within each system, creeks were divided into two primary segments based upon tidal zoning: intertidal (i.e., shallow, narrow headwater sections) and subtidal (i.e., deeper and wider sections), and watersheds were delineated for each segment. In total, we report findings on 29 intertidal and 24 subtidal creeks. Indicators sampled throughout each creek included water quality (e.g., dissolved oxygen, salinity, nutrients, chlorophyll-a levels), sediment quality (e.g., characteristics, contaminant levels including emerging contaminants), pathogen and viral indicators (e.g., fecal coliform, enterococci, F+ coliphages, F- coliphages), and abundance and tissue contamination of biological resources (e.g., macrobenthic and nektonic communities, shellfish tissue contaminants). Tidal creeks have been identified as a sentinel habitat to assess the impacts of coastal development on estuarine areas in the southeastern US. A conceptual model for tidal creeks in the southeastern US identifies that human alterations (stressors) of upland in a watershed such as increased impervious cover will lead to changes in the physical and chemical environment such as microbial and nutrient pollution (exposures), of a receiving water body which then lead to changes in the living resources (responses). The overall objective of this study is to evaluate the applicability of the current tidal creek classification framework and conceptual model linking tidal creek ecological condition to potential impacts of development and urban growth on ecosystem value and function in the Gulf of Mexico US in collaboration with Gulf of Mexico NERR sites. The conceptual model was validated for the Gulf of Mexico US tidal creeks. The tidal creek classification system developed for the southeastern US could be applied to the Gulf of Mexico tidal creeks; however, some differences were found that warrant further examination. In particular, pollutants appeared to translate further downstream in the Gulf of Mexico US compared to the southeastern US. These differences are likely the result of the morphological and oceanographic differences between the two regions. Tidal creeks appear to serve as sentinel habitats to provide an early warning of the ensuing harm to the larger ecosystem in both the Southeastern and Gulf of Mexico US tidal creeks.
Resumo:
Innovative research relating oceans and human health is advancing our understanding of disease-causing organisms in coastal ecosystems. Novel techniques are elucidating the loading, transport and fate of pathogens in coastal ecosystems, and identifying sources of contamination. This research is facilitating improved risk assessments for seafood consumers and those who use the oceans for recreation. A number of challenges still remain and define future directions of research and public policy. Sample processing and molecular detection techniques need to be advanced to allow rapid and specific identification of microbes of public health concern from complex environmental samples. Water quality standards need to be updated to more accurately reflect health risks and to provide managers with improved tools for decision-making. Greater discrimination of virulent versus harmless microbes is needed to identify environmental reservoirs of pathogens and factors leading to human infections. Investigations must include examination of microbial community dynamics that may be important from a human health perspective. Further research is needed to evaluate the ecology of non-enteric water-transmitted diseases. Sentinels should also be established and monitored, providing early warning of dangers to ecosystem health. Taken together, this effort will provide more reliable information about public health risks associated with beaches and seafood consumption, and how human activities can affect their exposure to disease-causing organisms from the oceans.
Resumo:
In this study, the intestinal microbiota of kuruma shrimp (Marsupenaeus japonicus) was examined by molecular analysis of the 16S rDNA to identify the dominant intestinal bacteria and to investigate the effects of Bacillus spp. on intestinal microbial diversity. Samples of the intestines of kuruma shrimp fed normal feed and Bacillus spp. amended feed. PCR and denaturing gradient gel electrophoresis (DGGE) analyses were then performed on DNA extracted directly from the guts. Population fingerprints of the predominant organisms were generated by DGGE analysis of the universal V3 16S rDNA amplicons, and distinct bands in the gels were sequenced. The results suggested that the gut of kuruma shrimp was dominated by Vibrio sp. and uncultured gamma proteobacterium. Overall, the results of this study suggest that PCR-DGGE is a possible method of studying the intestinal microbial diversity of shrimp.
Resumo:
The human gastrointestinal (GI) tract is colonized by a dense and diverse bacterial community, the commensal microbiota, which plays an important role in the overall health of individuals. This microbiota is relatively stable throughout adult life, but may fluctuate over time with aging and disease. The adaptation of the gut microbiota to our changing life-style is probably the reason for the large inter-individual variation observed among different people. Since the gut microbiota plays an essential role in interactions with host metabolism, it is of utmost importance to explore this relationship. The elderly intestinal microbiota has been the subject of a number of studies in recent years. The results presented in this thesis have further contributed to the expansion of knowledge related to gut microbiota research highlighting the combined effect of culture based and molecular methods as powerful tools for understanding the true impact of microbes. The degree of correlation between measurements from both methods suggested that a single method is capable of profiling intestinal Bifidobacterium spp., Lactobacillus spp. and Enterobacteriaceae populations. Bacteriocins have shown great promise as alternatives to traditional antibiotics. In this respect, the isolation and characterisation of bacteriocinogenic strains are important due to growing evidence indicating bacteriocin production as a potential probiotic trait by virtue of strain dominance and/or pathogen inhibition in the mammalian intestine. The selection pressure applied on the bacterial population during antibiotic usage is the driving force for the emergence of antibiotic resistant bacteria. Identification of antibiotic resistant isolates opens up the possibility of using such probiotics to offset the problems caused by antibiotics to the gut microbiota and to improve the intestinal microbial environment. Future work is required to explore the culture collection housing thousands of bacterial isolates as a valuable source of potential probiotics for use for the elderly Irish community.
Resumo:
The influence of liming on rhizosphere microbial biomass C and incorporation of root exudates was studied in the field by in situ pulse labelling of temperate grassland vegetation with (13)CO(2) for a 3-day period. In plots that had been limed (CaCO(3) amended) annually for 3 years, incorporation into shoots and roots was, respectively, greater and lower than in unlimed plots. Analysis of chloroform-labile C demonstrated lower levels of (13)C incorporation into microbial biomass in limed soils compared to unlimed soils. The turnover of the recently assimilated (13)C compounds was faster in microbial biomass from limed than that from unlimed soils, suggesting that liming increases incorporation by microbial communities of root exudates. An exponential decay model of (13)C in total microbial biomass in limed soils indicated that the half-life of the tracer within this carbon pool was 4.7 days. Results are presented and discussed in relation to the absolute values of (13)C fixed and allocated within the plant-soil system.
Resumo:
The present study on "Microbial production of antibiotics from mangrove ecosystem” was carried out for a period of one year in four selected Stations, Mangalavana, Narakkal, Puthuvyppu and light house area of Puthuvyppu (9°55' — 10°10'N and 76°10‘ - 76°20'E) from January to December 1991. Though much emphasis has been given to occurrence and distribution of actinomycetes, an attempt was also made to understand the distribution patterns of other micro flora in the sediments. Data on physico-chemical parameters were also collected to find out their relationship if any with the microflora. The principle interest of the present investigation is to determineseasonal variations of antagonistic actinomycetes in selected mangrove ecosystem. The microbial interrelationship in mangrove sediments was found out by constructing the ratio between bacteria and actinomycetes, bacteria and fungi, fungi and actinomycetes. In addition temperature, pH, salinity, dissolved oxygen and organic carbon were determined seasonally and their possible relationship was statistically analyzed and the results are presented. Isolated actinomycetes were subjected to cross streak assay to know their nature of antibiotic activity against test fish pathogens and crude antibiotics were extracted from selected isolates and their inhibitory activity is studied and the results are discussed.
Resumo:
Batch and continuous culture anaerobic fermentation systems, inoculated with human faeces, were utilised to investigate the antimicrobial actions of two probiotics, Lactobacillus plantartan 0407, combined with oligofructose and Bifidobacterium bifidum Bb12, combined with a mixture of oligofructose and xylo-oligosaccharides (50:50 w/w) against E coli and Campylobacter jejuni. In batch fermenters, both E coli and C jejuni were inhibited by the synbiotics, even when the culture pH was maintained at around neutral. In continuous culture C jejuni was inhibited but the synbiotic failed to inhibit E coli. Although no definitive answer in addressing the mechanisms underlying antimicrobial activity was derived, results suggested that acetate and lactate directly were conferring antagonistic action, rather than as a result of lowering culture pH. In the course of the study culturing and fluorescent in situ hybridisation (FISH) methodologies for the enumeration of bacterial populations were compared. Bifidobacterial populations were underestimated using plating techniques, suggesting the non-culturability of certain bifidobacterial species. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Gut bacteria can be categorised as being either beneficial or potentially pathogenic due to their metabolic activities and fermentation end-products. Health-promoting effects of the microflora may include immunostimulation, improved digestion and absorption, vitamin synthesis, inhibition of the growth of potential pathogens and lowering of gas distension. Detrimental effects are carcinogen production, intestinal putrefaction, toxin production, diarrhoea/constipation and intestinal infections. Certain indigenous bacteria such as bifidobacteria and lactobacilli are considered to be examples of health-promoting constituents of the microflora. They may aid digestion of lactose in lactose-intolerant individuals, reduce diarrhoea, help resist infections and assist in inflammatory conditions. Probiotics, prebiotics and synbiotics are functional foods that fortify the lactate producing microflora of the human or animal gut.
Resumo:
Batch and continuous culture anaerobic fermentation systems, inoculated with human faeces, were utilised to investigate the antimicrobial actions of two probiotics, Lactobacillus plantartan 0407, combined with oligofructose and Bifidobacterium bifidum Bb12, combined with a mixture of oligofructose and xylo-oligosaccharides (50:50 w/w) against E coli and Campylobacter jejuni. In batch fermenters, both E coli and C jejuni were inhibited by the synbiotics, even when the culture pH was maintained at around neutral. In continuous culture C jejuni was inhibited but the synbiotic failed to inhibit E coli. Although no definitive answer in addressing the mechanisms underlying antimicrobial activity was derived, results suggested that acetate and lactate directly were conferring antagonistic action, rather than as a result of lowering culture pH. In the course of the study culturing and fluorescent in situ hybridisation (FISH) methodologies for the enumeration of bacterial populations were compared. Bifidobacterial populations were underestimated using plating techniques, suggesting the non-culturability of certain bifidobacterial species. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Ulcerative colitis is a severe, relapsing and remitting disease of the human large intestine characterised by inflammation of the mucosa and submucosa. The main site of disease is the sigmoid/rectal region of the large bowel but the aetiology remains unknown. There is considerable evidence to indicate that the components of the resident colonic microflora can play an important role in initiation of the disease. The present study was aimed at characterising the faecal microflora of ulcerative colitis patients in remission and active phases to determine profile differences. Faecal samples were obtained from 12 patients, 6 with active colitis and 6 in remission. The samples were analysed for populations of lactobacilli, bifidobacteria, clostridia, bacteroides, sulphate-reducing bacteria (SRB) and total bacteria using culture independent fluorescence in situ hybridisation (FISH). Lactobacillus-specific denaturing gradient gel electrophoresis (DGGE) was then performed to compare the species present. Numbers of lactobacilli were significantly lower (p<0.05) during the active phase of the disease but the other populations tested did not differ. DGGE analysis revealed that Lactobacillus salivarus, Lactobacillus manihotivorans and Pediococcus acidilactici were present in remission, but not during active inflammation. These results imply that a reduction in intestinal Lactobacillus species may be important in the initiation of ulcerative colitis.
Resumo:
Diet, among other environmental and genetic factors, is currently recognised to have an important role in health and disease. There is increasing evidence that the human colonic microbiota can contribute positively towards host nutrition and health. As such, dietary modulation has been proposed as important for improved gut health, especially during the highly sensitive stage of infancy. Differences in gut microflora composition and incidence of infection occur between breast- and formula-fed infants. Human milk components that cannot be duplicated in infant formulae could possibly account for these differences. However, various functional food ingredients such as oligosaccharides, prebiotics, proteins and probiotics could effect a beneficial modification in the composition and activities of gut microflora of infants. The aim of the present review is to describe existing knowledge on the composition and metabolic activities of the gastrointestinal microflora of human infants and discuss various possibilities and opportunities for its nutritional modulation.