995 resultados para Simulation mastication effort
Resumo:
Since the Three Mile Island Unit 2 (TMI-2), accident in 1979 which led to the meltdown of about one half of the reactor core and to limited releases of radioactive materials to the environment, an important international effort has been made on severe accident research. The present work aims to investigate the behaviour of a Small Modular Reactor during severe accident conditions. In order to perform these analyses, a SMR has been studied for the European reference severe accident analysis code ASTEC, developed by IRSN and GRS. In the thesis will be described in detail the IRIS Small Modular Reactor; the reference reactor chosen to develop the ASTEC input deck. The IRIS model was developed in the framework of a research collaboration with the IRSN development team. In the thesis will be described systematically the creation of the ASTEC IRIS input deck: the nodalization scheme adopted, the solution used to simulate the passive safety systems and the strong interaction between the reactor vessel and the containment. The ASTEC SMR model will be tested against the RELAP-GOTHIC coupled code model, with respect to a Design Basis Accident, to evaluate the capability of the ASTEC code on reproducing correctly the behaviour of the nuclear system. Once the model has been validated, a severe accident scenario will be simulated and the obtained results along with the nuclear system response will be analysed.
Resumo:
This thesis deals with the development of a novel simulation technique for macromolecules in electrolyte solutions, with the aim of a performance improvement over current molecular-dynamics based simulation methods. In solutions containing charged macromolecules and salt ions, it is the complex interplay of electrostatic interactions and hydrodynamics that determines the equilibrium and non-equilibrium behavior. However, the treatment of the solvent and dissolved ions makes up the major part of the computational effort. Thus an efficient modeling of both components is essential for the performance of a method. With the novel method we approach the solvent in a coarse-grained fashion and replace the explicit-ion description by a dynamic mean-field treatment. Hence we combine particle- and field-based descriptions in a hybrid method and thereby effectively solve the electrokinetic equations. The developed algorithm is tested extensively in terms of accuracy and performance, and suitable parameter sets are determined. As a first application we study charged polymer solutions (polyelectrolytes) in shear flow with focus on their viscoelastic properties. Here we also include semidilute solutions, which are computationally demanding. Secondly we study the electro-osmotic flow on superhydrophobic surfaces, where we perform a detailed comparison to theoretical predictions.
Resumo:
A Reynolds-Stress Turbulence Model has been incorporated with success into the KIVA code, a computational fluid dynamics hydrocode for three-dimensional simulation of fluid flow in engines. The newly implemented Reynolds-stress turbulence model greatly improves the robustness of KIVA, which in its original version has only eddy-viscosity turbulence models. Validation of the Reynolds-stress turbulence model is accomplished by conducting pipe-flow and channel-flow simulations, and comparing the computed results with experimental and direct numerical simulation data. Flows in engines of various geometry and operating conditions are calculated using the model, to study the complex flow fields as well as confirm the model’s validity. Results show that the Reynolds-stress turbulence model is able to resolve flow details such as swirl and recirculation bubbles. The model is proven to be an appropriate choice for engine simulations, with consistency and robustness, while requiring relatively low computational effort.
Resumo:
n this article, a tool for simulating the channel impulse response for indoor visible light communications using 3D computer-aided design (CAD) models is presented. The simulation tool is based on a previous Monte Carlo ray-tracing algorithm for indoor infrared channel estimation, but including wavelength response evaluation. The 3D scene, or the simulation environment, can be defined using any CAD software in which the user specifies, in addition to the setting geometry, the reflection characteristics of the surface materials as well as the structures of the emitters and receivers involved in the simulation. Also, in an effort to improve the computational efficiency, two optimizations are proposed. The first one consists of dividing the setting into cubic regions of equal size, which offers a calculation improvement of approximately 50% compared to not dividing the 3D scene into sub-regions. The second one involves the parallelization of the simulation algorithm, which provides a computational speed-up proportional to the number of processors used.
Resumo:
To foster ongoing international cooperation beyond ACES (APEC Cooperation for Earthquake Simulation) on the simulation of solid earth phenomena, agreement was reached to work towards establishment of a frontier international research institute for simulating the solid earth: iSERVO = International Solid Earth Research Virtual Observatory institute (http://www.iservo.edu.au). This paper outlines a key Australian contribution towards the iSERVO institute seed project, this is the construction of: (1) a typical intraplate fault system model using practical fault system data of South Australia (i.e., SA interacting fault model), which includes data management and editing, geometrical modeling and mesh generation; and (2) a finite-element based software tool, which is built on our long-term and ongoing effort to develop the R-minimum strategy based finite-element computational algorithm and software tool for modelling three-dimensional nonlinear frictional contact behavior between multiple deformable bodies with the arbitrarily-shaped contact element strategy. A numerical simulation of the SA fault system is carried out using this software tool to demonstrate its capability and our efforts towards seeding the iSERVO Institute.
Resumo:
The structure of a comprehensive research project into mine fires study applying the Ventgraph mine fire simulation software, preplanning of escape scenarios and general interaction with rescue responses is outlined. The project has Australian Coal Association Research Program (ACARP) funding and also relies on substantial mining company site support. This practical input from mine operators is essential and allows the approach to be introduced in the most creditable way. The effort is built around the introduction of fire simulation computer software to the Australian mining industry and the consequent modelling of fire scenarios in selected different mine layouts. Application of the simulation software package to the changing mine layouts requires experience to achieve realistic outcomes. Most Australian mines of size currently use a ventilation network simulation program. Under the project a small subroutine has been written to transfer the input data from the existing mine ventilation network simulation program to ‘Ventgraph’. This has been tested successfully. To understand fire simulation behaviour on the mine ventilation system, it is necessary to understood the possible effects of mine fires on various mine ventilation systems correctly first. Case studies demonstrating the possible effects of fires on some typical Australian coal mine ventilation circuits have been examined. The situation in which there is some gas make at the face and effects with fire have also been developed to emphasise how unstable and dangerous situations may arise. The primary objective of the part of the study described in this paper is to use mine fire simulation software to gain better understanding of how spontaneous combustion initiated fires can interact with the complex ventilation behaviour underground during a substantial fire. It focuses on the simulation of spontaneous combustion sourced heatings that develop into open fires. Further, it examines ventilation behaviour effects of spontaneous combustion initiated pillar fires and examines the difficulties these can be present if a ventilation reversal occurs. It also briefly examines simulation of use of the inertisation to assist in mine recovery. Mine fires are recognised across the world as a major hazard issue. New approaches allowing improvement in understanding their consequences have been developed as an aid in handling this complex area.
Resumo:
The identification of disease clusters in space or space-time is of vital importance for public health policy and action. In the case of methicillin-resistant Staphylococcus aureus (MRSA), it is particularly important to distinguish between community and health care-associated infections, and to identify reservoirs of infection. 832 cases of MRSA in the West Midlands (UK) were tested for clustering and evidence of community transmission, after being geo-located to the centroids of UK unit postcodes (postal areas roughly equivalent to Zip+4 zip code areas). An age-stratified analysis was also carried out at the coarser spatial resolution of UK Census Output Areas. Stochastic simulation and kernel density estimation were combined to identify significant local clusters of MRSA (p<0.025), which were supported by SaTScan spatial and spatio-temporal scan. In order to investigate local sampling effort, a spatial 'random labelling' approach was used, with MRSA as cases and MSSA (methicillin-sensitive S. aureus) as controls. Heavy sampling in general was a response to MRSA outbreaks, which in turn appeared to be associated with medical care environments. The significance of clusters identified by kernel estimation was independently supported by information on the locations and client groups of nursing homes, and by preliminary molecular typing of isolates. In the absence of occupational/ lifestyle data on patients, the assumption was made that an individual's location and consequent risk is adequately represented by their residential postcode. The problems of this assumption are discussed, with recommendations for future data collection.
Resumo:
There is considerable concern over the increased effect of fossil fuel usage on the environment and this concern has resulted in an effort to find alternative, environmentally friendly energy sources. Biomass is an available alternative resource which may be converted by flash pyrolysis to produce a crude liquid product that can be used directly to substitute for conventional fossil fuels or upgraded to a higher quality fuel. Both the crude and upgraded products may be utilised for power generation. A computer program, BLUNT, has been developed to model the flash pyrolysis of biomass with subsequent upgrading, refining or power production. The program assesses and compares the economic and technical opportunities for biomass thermochemical conversion on the same basis. BLUNT works by building up a selected processing route from a number of process steps through which the material passes sequentially. Each process step has a step model that calculates the mass and energy balances, the utilities usage and the capital cost for that step of the process. The results of the step models are combined to determine the performance of the whole conversion route. Sample results from the modelling are presented in this thesis. Due to the large number of possible combinations of feeds, conversion processes, products and sensitivity analyses a complete set of results is impractical to present in a single publication. Variation of the production costs for the available products have been illustrated based on the cost of a wood feedstock. The effect of selected macroeconomic factors on the production costs of bio-diesel and gasoline are also given.
Resumo:
Changes in modern structural design have created a demand for products which are light but possess high strength. The objective is a reduction in fuel consumption and weight of materials to satisfy both economic and environmental criteria. Cold roll forming has the potential to fulfil this requirement. The bending process is controlled by the shape of the profile machined on the periphery of the rolls. A CNC lathe can machine complicated profiles to a high standard of precision, but the expertise of a numerical control programmer is required. A computer program was developed during this project, using the expert system concept, to calculate tool paths and consequently to expedite the procurement of the machine control tapes whilst removing the need for a skilled programmer. Codifying the expertise of a human and the encapsulation of knowledge within a computer memory, destroys the dependency on highly trained people whose services can be costly, inconsistent and unreliable. A successful cold roll forming operation, where the product is geometrically correct and free from visual defects, is not easy to attain. The geometry of the sheet after travelling through the rolling mill depends on the residual strains generated by the elastic-plastic deformation. Accurate evaluation of the residual strains can provide the basis for predicting the geometry of the section. A study of geometric and material non-linearity, yield criteria, material hardening and stress-strain relationships was undertaken in this research project. The finite element method was chosen to provide a mathematical model of the bending process and, to ensure an efficient manipulation of the large stiffness matrices, the frontal solution was applied. A series of experimental investigations provided data to compare with corresponding values obtained from the theoretical modelling. A computer simulation, capable of predicting that a design will be satisfactory prior to the manufacture of the rolls, would allow effort to be concentrated into devising an optimum design where costs are minimised.
Resumo:
An investigation is carried out into the design of a small local computer network for eventual implementation on the University of Aston campus. Microprocessors are investigated as a possible choice for use as a node controller for reasons of cost and reliability. Since the network will be local, high speed lines of megabit order are proposed. After an introduction to several well known networks, various aspects of networks are discussed including packet switching, functions of a node and host-node protocol. Chapter three develops the network philosophy with an introduction to microprocessors. Various organisations of microprocessors into multicomputer and multiprocessor systems are discussed, together with methods of achieving reliabls computing. Chapter four presents the simulation model and its implentation as a computer program. The major modelling effort is to study the behaviour of messages queueing for access to the network and the message delay experienced on the network. Use is made of spectral analysis to determine the sampling frequency while Sxponentially Weighted Noving Averages are used for data smoothing.
Resumo:
A fine control of the microstructured polymer fiber Bragg grating spectrum properties, such as maximum reflected power and 3-dB bandwidth, through acousto-optic modulation is presented. For simulation purposes, the device is modelled as a single structure, comprising a silica horn and a fiber Bragg grating. For similar sized structures a good correlation between the numerical results and the experimental data is obtained, allowing the strain field to be completely characterized along the whole structure. It is also shown that the microstructured polymer fiber Bragg grating requires less effort from the piezoelectric actuator to produce modification in the grating spectrum when compared with a silica fiber Bragg grating. This technique has potential to be applied on tunable optical filters and tunable cavities for photonic applications.
Resumo:
Various flexible mechanisms related to quality of service (QoS) provisioning have been specified for uplink traffic at the medium access control (MAC) layer in the IEEE 802.16 standards. Among the mechanisms, contention based bandwidth request scheme can be used to indicate bandwidth demands to the base station for the non-real-time polling and best-effort services. These two services are used for most applications with unknown traffic characteristics. Due to the diverse QoS requirements of those applications, service differentiation (SD) is anticipated over the contention based bandwidth request scheme. In this paper we investigate the SD with the bandwidth request scheme by means of assigning different channel access parameters and bandwidth allocation priorities at different packets arrival probability. The effectiveness of the differentiation schemes is evaluated by simulations. It is observed that the initial backoff window can be efficient in SD, and if combined with the bandwidth allocation priority, the SD performances will be better.
Resumo:
A fine control of the microstructured polymer fiber Bragg grating spectrum properties, such as maximum reflected power and 3-dB bandwidth, through acousto-optic modulation is presented. For simulation purposes, the device is modelled as a single structure, comprising a silica horn and a fiber Bragg grating. For similar sized structures a good correlation between the numerical results and the experimental data is obtained, allowing the strain field to be completely characterized along the whole structure. It is also shown that the microstructured polymer fiber Bragg grating requires less effort from the piezoelectric actuator to produce modification in the grating spectrum when compared with a silica fiber Bragg grating. This technique has potential to be applied on tunable optical filters and tunable cavities for photonic applications.
Resumo:
During the past three decades, the use of roundabouts has increased throughout the world due to their greater benefits in comparison with intersections controlled by traditional means. Roundabouts are often chosen because they are widely associated with low accident rates, lower construction and operating costs, and reasonable capacities and delay. ^ In the planning and design of roundabouts, special attention should be given to the movement of pedestrians and bicycles. As a result, there are several guidelines for the design of pedestrian and bicycle treatments at roundabouts that increase the safety of both pedestrians and bicyclists at existing and proposed roundabout locations. Different design guidelines have differing criteria for handling pedestrians and bicyclists at roundabout locations. Although all of the investigated guidelines provide better safety (depending on the traffic conditions at a specific location), their effects on the performance of the roundabout have not been examined yet. ^ Existing roundabout analysis software packages provide estimates of capacity and performance characteristics. This includes characteristics such as delay, queue lengths, stop rates, effects of heavy vehicles, crash frequencies, and geometric delays, as well as fuel consumption, pollutant emissions and operating costs for roundabouts. None of these software packages, however, are capable of determining the effects of various pedestrian crossing locations, nor the effect of different bicycle treatments on the performance of roundabouts. ^ The objective of this research is to develop simulation models capable of determining the effect of various pedestrian and bicycle treatments at single-lane roundabouts. To achieve this, four models were developed. The first model simulates a single-lane roundabout without bicycle and pedestrian traffic. The second model simulates a single-lane roundabout with a pedestrian crossing and mixed flow bicyclists. The third model simulates a single-lane roundabout with a combined pedestrian and bicycle crossing, while the fourth model simulates a single-lane roundabout with a pedestrian crossing and a bicycle lane at the outer perimeter of the roundabout for the bicycles. Traffic data was collected at a modern roundabout in Boca Raton, Florida. ^ The results of this effort show that installing a pedestrian crossing on the roundabout approach will have a negative impact on the entry flow, while the downstream approach will benefit from the newly created gaps by pedestrians. Also, it was concluded that a bicycle lane configuration is more beneficial for all users of the roundabout instead of the mixed flow or combined crossing. Installing the pedestrian crossing at one-car length is more beneficial for pedestrians than two- and three-car lengths. Finally, it was concluded that the effect of the pedestrian crossing on the vehicle queues diminishes as the distance between the crossing and the roundabout increases. ^
Resumo:
Integer programming, simulation, and rules of thumb have been integrated to develop a simulation-based heuristic for short-term assignment of fleet in the car rental industry. It generates a plan for car movements, and a set of booking limits to produce high revenue for a given planning horizon. Three different scenarios were used to validate the heuristic. The heuristic's mean revenue was significant higher than the historical ones, in all three scenarios. Time to run the heuristic for each experiment was within the time limits of three hours set for the decision making process even though it is not fully automated. These findings demonstrated that the heuristic provides better plans (plans that yield higher profit) for the dynamic allocation of fleet than the historical decision processes. Another contribution of this effort is the integration of IP and rules of thumb to search for better performance under stochastic conditions.