999 resultados para Silicon Cycling in the World Ocean
Resumo:
We present a 3 year record of deep water particle flux at the recently initiated ESTOC (European Station for Time-series in the Ocean, Canary Islands) located in the eastern subtropical North Atlantic gyre. Particle flux was highly seasonal, with flux maxima occurring in late winter-early spring. A comparison with historic CZCS (Coastal Zone Colour Scanner) data shows that these flux maxima occurred about 1 month after maximum chlorophyll was observed in surface waters in a presumed primary source region 100 km * 100 km northeast of the trap location. The main components of the particles collected with the traps were mineral particles and carbonate, both correlating strongly with organic matter sedimentation. Mineral particles in the sinking matter are indicative of the high aeolian input from the African desert regions. Comparing particle fluxes at 1 km and 3 km depth, we find that particle sedimentation increased substantially with depth. Yearly organic carbon sedimentation was 0.6 g m**-2 at 1 km depth compared with 0.8 g m**-2 at 3 km. We hypothesize that higher phytoplankton biomass observed further north could be a source of laterally advecting particles that interact with fast sinking particles originating from the primary source region. This hypothesis is also supported by the differences in size distribution of lithogenic matter found at the two trap depths.
Resumo:
Thirty-five box cores were collected from the continental shelf in the Ross Sea during cruises in January and February, 1983. Pb-210 and Pu-239, 240 geochronologies coupled with biogenic-silica measurements were used to calculate accumulation rates of biogenic silica. Sediment in the southern Ross Sea accumulates at rates ranging from <=0.6 to 2.7 mm/y, with the highest values occurring in the southwestern Ross Sea. Biogenic-silica content in surface sediments ranges from 2% (by weight) in Sulzberger Bay and the eastern Ross Sea to 41% in the southwestern Ross Sea. Biogenic-silica accumulation in the southwestern Ross Sea averages 2.7 * 10**-2 g/cm**2/y and is comparable to accumulation rates in high-productivity, upwelling environments from low-latitude continental margins (e.g., Gulf of California, coast of Peru). The total rate of biogenic-silica accumulation in the southern Ross Sea is approximately 0.2 * 10**14 g/y, with most of the accumulation occurring in basins (500-1000 m water depth). If biogenic-silica accumulation in the southern Ross Sea continental shelf is typical of other basins on the Antarctic continental shelf, as much as 1.2 * 10**14 g/y of silica could be accumulating in these deposits. Biogenic-silica accumulation on the Antarctic continental shelf may account for as much as a fourth of the dissolved silica supplied to the world ocean by rivers and hydrothermal vents.
Resumo:
We present records of biogenic opal percentage and burial rate in 12 piston cores from the Atlantic and Indian sectors of the Southern Ocean. These records provide a detailed, quantitative description of changing patterns of opal deposition over the last 450 kyr. The striking regional coherence of these records suggests that dissolution in the deep sea and sediment pore waters does not obscure the surface productivity signal, and therefore these opal time series can be used in combination with other surface water tracers to make inferences about the chemistry and circulation of the Southern Ocean under different global climate conditions. Three broad depositional patterns can be distinguished. Northernmost records (39°-42°S latitude) are characterized by enhanced opal burial during glacial periods and strong 41 kyr periodicity. Records from cores just north of the present Antarctic Polar Front (46°-49°S) show even larger increases in opal burial rate during glacial intervals, but have variance concentrated in the 100 and 23 kyr bands. Southernmost records (51°-55°S) are completely out of phase with those to the north, with greatly reduced opal burial rates during glacial periods. Taken as a whole, the opal records show no evidence for the increased total Antarctic productivity predicted by recent geochemical models of atmospheric CO2 variability. The areal expansion of Southern Ocean sea ice over the present zone of high siliceous productivity provides one plausible explanation for the glacial-interglacial opal patterns. The excess silica not taken up in this zone during glacial periods would contribute to greater nutrient availability and thus higher productivity in the subantarctic region. However, local circulation changes may act to modify this basic signal, possibly accounting for the observed differences in the opal variance spectra.
Resumo:
A method was developed to measure porosity and dissolved interstitial silicate at millimeter intervals or less in a sediment core. In cores from Emerald Basin (Scotian Shelf), interstitial concentrations near the sediment surface did not drop rapidly to bottom-water concentrations as measured in bottle casts (28 µM) but remained as high as 166 µM in the upper 0.5 mm of sediment High rates of benthic silicate release were measured which could not be accounted for by interstitial concentration gradients or by ventilation of macro-invertebrate burrows. The silicate discontinuity observed between the sediments and water column suggests that a diffusive sublayer exists in a zone of viscous flow above the sediment surface. This is possible only if a surface reaction is primarily responsible for silicate release. By assuming a linear concentration gradient across this diffusive sublayer, the silicate release rates were used to estimate the thickness of the sublayer to be about 2 mm.