840 resultados para Signal-to-noise Ratio


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A method to reduce the noise power in far-field pattern without modifying the desired signal is proposed. Therefore, an important signal-to-noise ratio improvement may be achieved. The method is used when the antenna measurement is performed in planar near-field, where the recorded data are assumed to be corrupted with white Gaussian and space-stationary noise, because of the receiver additive noise. Back-propagating the measured field from the scan plane to the antenna under test (AUT) plane, the noise remains white Gaussian and space-stationary, whereas the desired field is theoretically concentrated in the aperture antenna. Thanks to this fact, a spatial filtering may be applied, cancelling the field which is located out of the AUT dimensions and which is only composed by noise. Next, a planar field to far-field transformation is carried out, achieving a great improvement compared to the pattern obtained directly from the measurement. To verify the effectiveness of the method, two examples will be presented using both simulated and measured near-field data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes a quiet zone probing approach which deals with low dynamic range quiet zone acquisitions. Lack of dynamic range is a feature of millimeter and sub-millimeter wavelength technologies. It is consequence of the gradually smaller power generated by the instrumentation, that follows a f^α law with frequency, being α≥1 variable depending on the signal source’s technology. The proposed approach is based on an optimal data reduction scenario which redounds in a maximum signal to noise ratio increase for the signal pattern, with minimum information losses. After theoretical formulation, practical applications of the technique are proposed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Magnetoencephalography (MEG) provides a direct measure of brain activity with high combined spatiotemporal resolution. Preprocessing is necessary to reduce contributions from environmental interference and biological noise. New method The effect on the signal-to-noise ratio of different preprocessing techniques is evaluated. The signal-to-noise ratio (SNR) was defined as the ratio between the mean signal amplitude (evoked field) and the standard error of the mean over trials. Results Recordings from 26 subjects obtained during and event-related visual paradigm with an Elekta MEG scanner were employed. Two methods were considered as first-step noise reduction: Signal Space Separation and temporal Signal Space Separation, which decompose the signal into components with origin inside and outside the head. Both algorithm increased the SNR by approximately 100%. Epoch-based methods, aimed at identifying and rejecting epochs containing eye blinks, muscular artifacts and sensor jumps provided an SNR improvement of 5–10%. Decomposition methods evaluated were independent component analysis (ICA) and second-order blind identification (SOBI). The increase in SNR was of about 36% with ICA and 33% with SOBI. Comparison with existing methods No previous systematic evaluation of the effect of the typical preprocessing steps in the SNR of the MEG signal has been performed. Conclusions The application of either SSS or tSSS is mandatory in Elekta systems. No significant differences were found between the two. While epoch-based methods have been routinely applied the less often considered decomposition methods were clearly superior and therefore their use seems advisable.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Optical coherence tomography (OCT) is an emerging coherence-domain technique capable of in vivo imaging of sub-surface structures at millimeter-scale depth. Its steady progress over the last decade has been galvanized by a breakthrough detection concept, termed spectral-domain OCT, which has resulted in a dramatic improvement of the OCT signal-to-noise ratio of 150 times demonstrated for weakly scattering objects at video-frame-rates. As we have realized, however, an important OCT sub-system remains sub-optimal: the sample arm traditionally operates serially, i.e. in flying-spot mode. To realize the full-field image acquisition, a Fourier holography system illuminated with a swept-source is employed instead of a Michelson interferometer commonly used in OCT. The proposed technique, termed Fourier-domain OCT, offers a new leap in signal-to-noise ratio improvement, as compared to flying-spot OCT systems, and represents the main thrust of this paper. Fourier-domain OCT is described, and its basic theoretical aspects, including the reconstruction algorithm, are discussed. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report a new approach in optical coherence tomography (OCT) called full-field Fourier-domain OCT (3F-OCT). A three-dimensional image of a sample is obtained by digital reconstruction of a three-dimensional data cube, acquired with a Fourier holography recording system, illuminated with a swept source. We present a theoretical and experimental study of the signal-to-noise ratio of the 3F-OCT approach versus serial image acquisition (flying-spot OCT) approach. (c) 2005 Optical Society of America.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate the effect of transmitter and receiver array configurations on the stray-light and diffraction-caused crosstalk in free-space optical interconnects. The optical system simulation software (Code V) is used to simulate both the stray-light and diffraction-caused crosstalk. Experimentally measured, spectrally-resolved, near-field images of VCSEL higher order modes were used as extended sources in our simulation model. Our results show that by changing the square lattice geometry to a hexagonal configuration, we obtain the reduction in the stray-light crosstalk of up to 9 dB and an overall signal-to-noise ratio improvement of 3 dB.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The quality of the image of 18F-FDG PET/CT scans in overweight patients is commonly degraded. This study evaluates, retrospectively, the relation between SNR, weight and dose injected in 65 patients, with a range of weights from 35 to 120 kg, with scans performed using the Biograph mCT using a standardized protocol in the Nuclear Medicine Department at Radboud University Medical Centre in Nijmegen, The Netherlands. Five ROI’s were made in the liver, assumed to be an organ of homogenous metabolism, at the same location, in five consecutive slices of the PET/CT scans to obtain the mean uptake (signal) values and its standard deviation (noise). The ratio of both gave us the Signal-to- Noise Ratio in the liver. With the help of a spreadsheet, weight, height, SNR and Body Mass Index were calculated and graphs were designed in order to obtain the relation between these factors. The graphs showed that SNR decreases as the body weight and/or BMI increased and also showed that, even though the dose injected increased, the SNR also decreased. This is due to the fact that heavier patients receive higher dose and, as reported, heavier patients have less SNR. These findings suggest that the quality of the images, measured by SNR, that were acquired in heavier patients are worst than thinner patients, even though higher FDG doses are given. With all this taken in consideration, it was necessary to make a new formula to calculate a new dose to give to patients and having a good and constant SNR in every patient. Through mathematic calculations, it was possible to reach to two new equations (power and exponential), which would lead to a SNR from a scan made with a specific reference weight (86 kg was the considered one) which was independent of body mass. The study implies that with these new formulas, patients heavier than the reference weight will receive higher doses and lighter patients will receive less doses. With the median being 86 kg, the new dose and new SNR was calculated and concluded that the quality of the image remains almost constant as the weight increases and the quantity of the necessary FDG remains almost the same, without increasing the costs for the total amount of FDG used in all these patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using the path-integral technique we examine the mutual information for the communication channel modeled by the nonlinear Schrödinger equation with additive Gaussian noise. The nonlinear Schrödinger equation is one of the fundamental models in nonlinear physics, and it has a broad range of applications, including fiber optical communications - the backbone of the internet. At large signal-to-noise ratio we present the mutual information through the path-integral, which is convenient for the perturbative expansion in nonlinearity. In the limit of small noise and small nonlinearity we derive analytically the first nonzero nonlinear correction to the mutual information for the channel.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider a continuum percolation model consisting of two types of nodes, namely legitimate and eavesdropper nodes, distributed according to independent Poisson point processes in R-2 of intensities lambda and lambda(E), respectively. A directed edge from one legitimate node A to another legitimate node B exists provided that the strength of the signal transmitted from node A that is received at node B is higher than that received at any eavesdropper node. The strength of the signal received at a node from a legitimate node depends not only on the distance between these nodes, but also on the location of the other legitimate nodes and an interference suppression parameter gamma. The graph is said to percolate when there exists an infinitely connected component. We show that for any finite intensity lambda(E) of eavesdropper nodes, there exists a critical intensity lambda(c) < infinity such that for all lambda > lambda(c) the graph percolates for sufficiently small values of the interference parameter. Furthermore, for the subcritical regime, we show that there exists a lambda(0) such that for all lambda < lambda(0) <= lambda(c) a suitable graph defined over eavesdropper node connections percolates that precludes percolation in the graphs formed by the legitimate nodes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have carried out a survey of the Andromeda galaxy for unresolved microlensing (pixel lensing). We present a subset of four short timescale, high signal-to-noise microlensing candidates found by imposing severe selection criteria: the source flux variation exceeds the flux of an R = 21 magnitude star and the full width at half maximum timescale is less than 25 days. Remarkably, in three out of four cases, we have been able to measure or strongly constrain the Einstein crossing time of the event. One event, which lies projected on the M 31 bulge, is almost certainly due to a stellar lens in the bulge of M 31. The other three candidates can be explained either by stars in M 31 and M 32 or by MACHOs.