987 resultados para Signal Complex
Resumo:
Purpose The purpose of this report was to demonstrate the normal complex insertional anatomy of the tibialis posterior tendon (TPT) in cadavers using magnetic resonance (MR) imaging with anatomic and histologic correlation. Material and methods Ten cadaveric ankles were used according to institutional guidelines. MR T1-weighted spin echo imaging was performed to demonstrate aspects of the complex anatomic distal insertions of the TPT in cadaveric specimens. Findings on MR imaging were correlated with those derived from anatomic and histologic study. Reults Generally, the TPT revealed a low signal in all MR images, except near the level of the medial malleolus, where the TPT suddenly changed direction and ""magic angle"" artifact could be observed. In five out of ten specimens (50%), a type I accessory navicular bone was found in the TPT. In all cases with a type I accessory navicular bone, the TPT had an altered signal in this area. Axial and coronal planes on MR imaging were the best in identifying the distal insertions of the TPT. A normal division of the TPT was observed just proximal to the insertion into the navicular bone in five specimens (100%) occurring at a maximum proximal distance from its attachment to the navicular bone of approximately 1.5 to 2 cm. In the other five specimens, in which a type I accessory navicular bone was present, the TPT directly inserted into the accessory bone and a slip less than 1.5 mm in thickness could be observed attaching to the medial aspect of the navicular bone (100%). Anatomic inspection confirmed the sites of the distal insertions of the components of the TPT. Conclusion MR imaging enabled detailed analysis of the complex distal insertions of the TPT as well as a better understanding of those features of its insertion that can simulate a lesion.
Resumo:
Objective Intrasubstance meniscal signal changes not reaching the articular surface on fast spin echo (FSE) sequences are considered to represent mucoid degeneration on MRI. The aim of this study was to evaluate the association of prevalent intrasubstance signal changes with incident tears of the medial meniscus detected on 3.0 T MRI over a 1-year period. Materials and methods A total of 161 women aged a parts per thousand yen40 years participated in a longitudinal 1-year observational study of knee osteoarthritis. MRI (3.0 T) was performed at baseline and 12-month follow-up. The anterior horn, body, and posterior horn of the medial meniscus were scored by two experienced musculoskeletal radiologists using the Boston-Leeds Osteoarthritis Knee Score (BLOKS) system. Four grades were used to describe the meniscal morphology: grade 0 (normal), grade 1 (intrasubstance signal changes not reaching the articular surface), grade 2 (single tears), and grade 3 (complex tears and maceration). Fisher`s exact test and the Cochran-Armitage trend test were performed to evaluate whether baseline intrasubstance signal changes (grade 1) predict incident meniscal tears/maceration (grades 2 and/or 3) in the same subregion of the medial meniscus, when compared to subregions without pathology as the reference group (grade 0). Results Medial meniscal intrasubstance signal changes at baseline did not predict tears at follow-up when evaluating the anterior and posterior horns (left-sided p-values 0.06 and 0.59, respectively). No incident tears were detected in the body. Conclusion We could not demonstrate an association between prevalent medial meniscal intrasubstance signal changes with incident tears over a 1-year period.
Resumo:
Breast cancer is the most common form of cancer among women and the identification of markers to discriminate tumorigenic from normal cells, as well as the different stages of this pathology, is of critical importance. Two-dimensional electrophoresis has been used before for studying breast cancer, but the progressive completion of human genomic sequencing and the introduction of mass spectrometry, combined with advanced bioinformatics for protein identification, have considerably increased the possibilities for characterizing new markers and therapeutic targets. Breast cancer proteomics has already identified markers of potential clinical interest (such as the molecular chaperone 14-3-3 sigma) and technological innovations such as large scale and high throughput analysis are now driving the field. Methods in functional proteomics have also been developed to study the intracellular signaling pathways that underlie the development of breast cancer. As illustrated with fibroblast growth factor-2, a mitogen and motogen factor for breast cancer cells, proteomics is a powerful approach to identify signaling proteins and to decipher the complex signaling circuitry involved in tumor growth. Together with genomics, proteomics is well on the way to molecularly characterizing the different types of breast tumor, and thus defining new therapeutic targets for future treatment.
Resumo:
GLUT4 is a mammalian facilitative glucose transporter that is highly expressed in adipose tissue and striated muscle. In response to insulin, GLUT4 moves from intracellular storage areas to the plasma membrane, thus increasing cellular glucose uptake. While the verification of this 'translocation hypothesis' (Cushman SW. Wardzala LJ. J Biol Chem 1980;255: 4758-4762 and Suzuki K, Kono T. Proc Natl Acad Sci 1980;77: 2542-2545) has increased our understanding of insulin-regulated glucose transport, a number of fundamental questions remain unanswered. Where is GLUT4 stored within the basal cell? How does GLUT4 move to the cell surface and what mechanism does insulin employ to accelerate this process) Ultimately we require a convergence of trafficking studies with research in signal transduction. However, despite more than 30 years of intensive research we have still not reached this point. The problem is complex, involving at least two separate signal transduction pathways which feed into what appears to be a very dynamic sorting process. Below we discuss some of these complexities and highlight new data that are bringing us closer to the resolution of these questions.
Resumo:
It has long been supposed that the interference observed in certain patterns of coordination is mediated, at least in part, by peripheral afference from the moving limbs. We manipulated the level of afferent input, arising from movement of the opposite limb, during the acquisition of a complex coordination task. Participants learned to generate flexion and extension movements of the right wrist, of 75degrees amplitude, that were a quarter cycle out of phase with a 1-Hz sinusoidal visual reference signal. On separate trials, the left wrist either was at rest, or was moved passively by a torque motor through 50degrees, 75degrees or 100degrees, in synchrony with the reference signal. Five acquisition sessions were conducted on successive days. A retention session was conducted I week later. Performance was initially superior when the opposite limb was moved passively than when it was static. The amplitude and frequency of active movement were lower in the static condition than in the driven conditions and the variation in the relative phase relation across trials was greater than in the driven conditions. In addition, the variability of amplitude, frequency and the relative phase relation during each trial was greater when the opposite limb was static than when driven. Similar effects were expressed in electromyograms. The most marked and consistent differences in the accuracy and consistency of performance (defined in terms of relative phase) were between the static condition and the condition in which the left wrist was moved through 50degrees. These outcomes were exhibited most prominently during initial exposure to the task. Increases in task performance during the acquisition period, as assessed by a number of kinematic variables, were generally well described by power functions. In addition, the recruitment of extensor carpi radialis (ECR), and the degree of co-contraction of flexor carpi radialis and ECR, decreased during acquisition. Our results indicate that, in an appropriate task context, afferent feedback from the opposite limb, even when out of phase with the focal movement, may have a positive influence upon the stability of coordination.
Resumo:
10th International Phycological Congress, Orlando, Florida, USA, 4-10 de agosto 2013.
Resumo:
In this paper we consider a complex-order forced van der Pol oscillator. The complex derivative Dα1jβ, with α, β ∈ ℝ+, is a generalization of the concept of an integer derivative, where α = 1, β = 0. The Fourier transforms of the periodic solutions of the complex-order forced van der Pol oscillator are computed for various values of parameters such as frequency ω and amplitude b of the external forcing, the damping μ, and parameters α and β. Moreover, we consider two cases: (i) b = 1, μ = {1.0, 5.0, 10.0}, and ω = {0.5, 2.46, 5.0, 20.0}; (ii) ω = 20.0, μ = {1.0, 5.0, 10.0}, and b = {1.0, 5.0, 10.0}. We verified that most of the signal energy is concentrated in the fundamental harmonic ω0. We also observed that the fundamental frequency of the oscillations ω0 varies with α and μ. For the range of tested values, the numerical fitting led to logarithmic approximations for system (7) in the two cases (i) and (ii). In conclusion, we verify that by varying the parameter values α and β of the complex-order derivative in expression (7), we accomplished a very effective way of perturbing the dynamical behavior of the forced van der Pol oscillator, which is no longer limited to parameters b and ω.
Resumo:
This paper studies the dynamics of foot–ground interaction in hexapod locomotion systems. For that objective the robot motion is characterized in terms of several locomotion variables and the ground is modelled through a non-linear spring-dashpot system, with parameters based on the studies of soil mechanics. Moreover, it is adopted an algorithm with foot-force feedback to control the robot locomotion. A set of model-based experiments reveals the influence of the locomotion velocity on the foot–ground transfer function, which presents complex-order dynamics.
Resumo:
In this paper we study several natural and man-made complex phenomena in the perspective of dynamical systems. For each class of phenomena, the system outputs are time-series records obtained in identical conditions. The time-series are viewed as manifestations of the system behavior and are processed for analyzing the system dynamics. First, we use the Fourier transform to process the data and we approximate the amplitude spectra by means of power law functions. We interpret the power law parameters as a phenomenological signature of the system dynamics. Second, we adopt the techniques of non-hierarchical clustering and multidimensional scaling to visualize hidden relationships between the complex phenomena. Third, we propose a vector field based analogy to interpret the patterns unveiled by the PL parameters.
Resumo:
Dissertação apresentada para obtenção do Grau de Doutor em Biologia, na especialidade de Genética Molecular, pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia
Resumo:
The Electrohysterogram (EHG) is a new instrument for pregnancy monitoring. It measures the uterine muscle electrical signal, which is closely related with uterine contractions. The EHG is described as a viable alternative and a more precise instrument than the currently most widely used method for the description of uterine contractions: the external tocogram. The EHG has also been indicated as a promising tool in the assessment of preterm delivery risk. This work intends to contribute towards the EHG characterization through the inventory of its components which are: • Contractions; • Labor contractions; • Alvarez waves; • Fetal movements; • Long Duration Low Frequency Waves; The instruments used for cataloging were: Spectral Analysis, parametric and non-parametric, energy estimators, time-frequency methods and the tocogram annotated by expert physicians. The EHG and respective tocograms were obtained from the Icelandic 16-electrode Electrohysterogram Database. 288 components were classified. There is not a component database of this type available for consultation. The spectral analysis module and power estimation was added to Uterine Explorer, an EHG analysis software developed in FCT-UNL. The importance of this component database is related to the need to improve the understanding of the EHG which is a relatively complex signal, as well as contributing towards the detection of preterm birth. Preterm birth accounts for 10% of all births and is one of the most relevant obstetric conditions. Despite the technological and scientific advances in perinatal medicine, in developed countries, prematurity is the major cause of neonatal death. Although various risk factors such as previous preterm births, infection, uterine malformations, multiple gestation and short uterine cervix in second trimester, have been associated with this condition, its etiology remains unknown [1][2][3].
Resumo:
Supplementary data associated with this article can be found, in the online version, at: http://dx.doi.org/10.1016/j.electacta.2015.09.169.
Resumo:
Synthetic inhibitor of apoptosis (IAP) antagonists induce degradation of IAP proteins such as cellular IAP1 (cIAP1), activate nuclear factor kappaB (NF-kappaB) signaling, and sensitize cells to tumor necrosis factor alpha (TNFalpha). The physiological relevance of these discoveries to cIAP1 function remains undetermined. We show that upon ligand binding, the TNF superfamily receptor FN14 recruits a cIAP1-Tnf receptor-associated factor 2 (TRAF2) complex. Unlike IAP antagonists that cause rapid proteasomal degradation of cIAP1, signaling by FN14 promotes the lysosomal degradation of cIAP1-TRAF2 in a cIAP1-dependent manner. TNF-like weak inducer of apoptosis (TWEAK)/FN14 signaling nevertheless promotes the same noncanonical NF-kappaB signaling elicited by IAP antagonists and, in sensitive cells, the same autocrine TNFalpha-induced death occurs. TWEAK-induced loss of the cIAP1-TRAF2 complex sensitizes immortalized and minimally passaged tumor cells to TNFalpha-induced death, whereas primary cells remain resistant. Conversely, cIAP1-TRAF2 complex overexpression limits FN14 signaling and protects tumor cells from TWEAK-induced TNFalpha sensitization. Lysosomal degradation of cIAP1-TRAF2 by TWEAK/FN14 therefore critically alters the balance of life/death signals emanating from TNF-R1 in immortalized cells.
Resumo:
mRNAs specifying immunoglobulin mu and delta heavy chains are encoded by a single large, complex transcription unit (mu + delta gene). The transcriptional activity of delta gene segments in terminally differentiated, IgM-secreting B lymphocytes is 10-20 times lower than in earlier B-lineage cells expressing delta mRNA. We find that transcription of the mu + delta gene in IgM-secreting murine myeloma cells terminates within a region of 500-1000 nucleotides immediately following the mu membrane (mu m) polyadenylylation site. Transcription decreases only minimally through this region in murine cell lines representative of earlier stages in B-cell development. A DNA fragment containing the mu m polyadenylylation signal gives protein-DNA complexes with different mobilities in gel retardation assays with nuclear extracts from myeloma cells than with nuclear extracts from earlier B-lineage cells. However, using a recently developed "footprinting" procedure in which protein-DNA complexes resolved in gel retardation assays are subjected to nucleolytic cleavage while still in the polyacrylamide gel, we find that the DNA sequences protected by factors from the two cell types are indistinguishable. The factor-binding site on the DNA is located 5' of the mu m polyadenylylation signal AATAAA and includes the 15-nucleotide-long A + T-rich palindrome CTGTAAACAAATGTC. This type of palindromic binding site exhibits orientation-dependent activity consistent with the reported properties of polymerase II termination signals. This binding site is followed by two sets of directly repeated DNA sequences with different helical conformation as revealed by their reactivity with the chemical nuclease 1,10-phenanthroline-copper. The close proximity of these features to the signals for mu m mRNA processing may reflect a linkage of the processes of developmentally regulated mu m polyadenylylation and transcription termination.
Resumo:
In a previous study, the Schistosoma mansoni Rho1 protein was able to complement Rho1 null mutant Saccharomyces cerevisiae cells at restrictive temperatures and under osmotic stress (low calcium concentration) better than the human homologue (RhoA). It is known that under osmotic stress, the S. cerevisiae Rho1 triggers two distinct pathways: activation of the membrane 1,3-beta-glucan synthase enzymatic complex and activation of the protein kinase C1 signal transduction pathway, promoting the transcription of response genes. In the present work the SmRho1 protein and its mutants smrho1E97P, smrho1L101T, and smrho1E97P, L101T were used to try to clarify the basis for the differential complementation of Rho1 knockout yeast strain by the human and S. mansoni genes. Experiments of functional complementation in the presence of caffeine and in the presence of the osmotic regulator sorbitol were conducted. SmRho1 and its mutants showed a differential complementation of the yeast cells in the presence of caffeine, since smrho1E97P and smrho1E97P, L101T mutants showed a delay in the growth when compared to the yeast complemented with the wild type SmRho1. However, in the presence of sorbitol and caffeine the wild type SmRho1 and mutants showed a similar complementation phenotype, as they allowed yeast growth in all caffeine concentrations tested.